Bài 1.80 trang 40 Sách bài tập Giải tích 12



Bài tập ôn tập chương 1

Bài 1.80 trang 40 Sách bài tập Giải tích 12: Cho hàm số: y = f(x) = x4 – 2mx2 + m3 – m2

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.

b) Xác định m để đồ thị (Cm) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt.

Lời giải:

Quảng cáo

a) y = x4 – 2x2

y′ = 4x3 – 4x = 4x(x2 – 1)

y′ = 0 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Đồ thị

Giải sách bài tập Toán 12 | Giải SBT Toán 12

b) y′ = 4x3 – 4mx = 4x(x2 – m)

Để (Cm) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là phương trình y’ = 0 có hai nghiệm phân biệt khác 0 và yCT = 0.

    +) Nếu m ≤ 0 thì x2 – m ≥ 0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.

    +) Nếu m > 0 thì y’ = 0 khi x = 0; x = √m hoặc x = -√m.

f(√m) = 0 ⇔ m2 – 2m2 + m3 – m2 = 0 ⇔ m2(m – 2) = 0 ⇔ m = 2 (do m > 0)

Vậy m = 2 là giá trị cần tìm.

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


bai-tap-on-tap-chuong-1.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên