Bài 1.81 trang 41 Sách bài tập Giải tích 12



Bài tập ôn tập chương 1

Bài 1.81 trang 41 Sách bài tập Giải tích 12:Cho hàm số:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

b) Viết phương trình các đường thẳng đi qua O(0;0) và tiếp xúc với (C) .

c) Tìm tất cả các điểm trên (C) có tọa độ là các số nguyên.

Lời giải:

Quảng cáo

a) Học sinh tự làm

b) Phương trình tiếp tuyến tại điểm M0(x0; y0) là:

y – y0 = y’(x0)(x – x0)

Trong đó:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Để đường thẳng đó đi qua O(0; 0), điều kiện cần và đủ là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

⇔ x0 = –1 - √3 hoặc x0 = –1 + √3

    +) Với x0 = –1 + √3, ta có phương trình tiếp tuyến:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

    +) Với x0 = –1 – √3, ta có phương trình tiếp tuyến:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

c) Để tìm trên (C) các điểm có tọa độ nguyên ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Điều kiện cần và đủ để M(x, y) ∈ (C) có tọa độ nguyên là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

tức (x – 2) là ước của 9.

Khi đó, x – 2 nhận các giá trị -1; 1; -3; 3; -9; 9 hay x nhận các giá trị 1; 3; -1; 5; -7; 11.

Do đó, ta có 6 điểm trên (C) có tọa độ nguyên là: (1;-6), (3;12), (-1;0), (5;6), (-7;2), (11;4).

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


bai-tap-on-tap-chuong-1.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên