Xác định vị trí tương đối của hai đường thẳng ∆1 và ∆2 trong mỗi trường hợp sau

Giải SBT Toán 12 Cánh diều Bài tập cuối chương 5

Bài 70 trang 70 SBT Toán 12 Tập 2: Xác định vị trí tương đối của hai đường thẳng ∆1 và ∆2 trong mỗi trường hợp sau:

Quảng cáo

a) 1: x+29=y127=z3272: x+11=y33=z73

b) 1:x+12=y65=z+34 và 2: x+137=y+95=z+158

c) 1: x+32=y+63=z+32 và 2: x+172=y333=z+162

Lời giải:

a) Đường thẳng ∆1 có vectơ chỉ phương uΔ1 = (9; 27; −27) và đi qua M1(−2; 1; 3).

Đường thẳng ∆2 có vectơ chỉ phương uΔ2 = (−1; −3; 3) và đi qua M2(−1; 3; 7).

M1M2 = (1; 2; 4) và uΔ1,uΔ2 = 272733;27931;92713 = (0; 0; 0).

Có uΔ1,uΔ2=0M1Δ2

Vậy ∆1 // ∆2.

b) Đường thẳng ∆1 có vectơ chỉ phương uΔ1 = (−2; 5; −4) và đi qua M1(−1; 6; −3).

Đường thẳng ∆2 có vectơ chỉ phương uΔ2 = (7; 5; 8) và đi qua M2(−13; −9; −15).

M1M2 = (−12; −15; −12) và

uΔ1,uΔ2 = 5458;4287;2575 = (60; −12; −45) ≠ 0.

Ta có: uΔ1,uΔ2.M1M2= 0.

Do uΔ1,uΔ20uΔ1,uΔ2.M1M2=0 nên ∆1 và ∆2 cắt nhau.

c) Đường thẳng ∆1 có vectơ chỉ phương uΔ1 = (2; 3; 2) và đi qua M1(−3; −6; −3).

Đường thẳng ∆2 có vectơ chỉ phương uΔ2 = (2; −3; 2) và đi qua M2(−17; 33; −16).

M1M2 = (−14; 39; −13) và uΔ1,uΔ2 = 3232;2222;2323 = (12; 0; –12).

uΔ1,uΔ2.M1M2= 12 . (−14) + 0 . 39 + (–12) . (−13) = −12 ≠ 0.

uΔ1,uΔ2.M1M2 ≠ 0 nên ∆1 và ∆2 chéo nhau.

Quảng cáo

Lời giải SBT Toán 12 Bài tập cuối chương 5 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác