Cho phương trình x^2 + 2(k + 1)x + k^2 + 2k = 0 trang 71 SBT Toán 9 Tập 2
Giải SBT Toán 9 Bài 3: Định lí Viète - Cánh diều
Bài 28 trang 71 SBT Toán 9 Tập 2: Cho phương trình x2 + 2(k + 1)x + k2 + 2k = 0.
a) Tìm các giá trị k để phương trình luôn có hai nghiệm x1, x2 và |x1|.|x2| = 1.
b*) Tìm các giá trị k (k < 0) để phương trình luôn có hai nghiệm x1, x2 trái dấu và nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm.
Lời giải:
a) Phương trình có: ∆’ =(k + 1)2 – (k2 + 2k) = k2 + 2k + 1 – k2 – 2k = 1 > 0.
Do đó phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của k.
Theo định lí Viète, ta có: x1 + x2 = –2(k + 1) và x1x2 =k2 + 2k.
Theo bài, |x1|.|x2| = 1 ta có |x1x2| = 1.
Suy ra |k2 + 2k| = 1.
Do đó k2 + 2k = –1 hoặc k2 + 2k = 1.
⦁ Giải phương trình: k2 + 2k = –1
k2 + 2k + 1 = 0
(k + 1)2 = 0
k + 1 = 0
k = –1.
⦁ Giải phương trình: k2 + 2k = 1
k2 + 2k – 1 = 0
Phương trình trên có ∆’ = 12 – 1.(–1) = 2 > 0.
Do đó phương trình này có hai nghiệm phân biệt là:
hoặc
Dễ thấy, nếu thì phương trình đã cho có hai nghiệm phân biệt x1, x2 thoả mãn |x1|.|x2| = 1.
Vậy là các giá trị cần tìm.
b*) ⦁ Để phương trình đã cho có hai nghiệm trái dấu thì tích của hai nghiệm là số âm, do đó x1x2 < 0, tức là k2 + 2k < 0.
Giải bất phương trình:
k2 + 2k < 0.
k(k + 2) < 0
Suy ra k < 0 và k + 2 > 0 (do đề bài đã cho điều kiện k < 0).
k < 0 và k > –2
–2 < k < 0.
Do đó điều kiện để phương trình có hai nghiệm trái dấu là –2 < k < 0. (*)
Giả sử x1 < 0 < x2.
⦁ Để phương trình đã cho có nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm, tức là x2 < 0 < |x1|.
Mà x1 < 0 nên |x1| = –x1.
Khi đó, ta có x2 < –x1 hay x1 + x2 < 0.
Tức là, –2(k + 1) < 0
k + 1 > 0
k > –1. (**).
Kết hợp hai điều kiện (*) và (**), ta có –1 < k < 0.
Dễ thấy, với các giá trị k sao cho –1 < k < 0 thì phương trình đã cho luôn có hai nghiệm x1, x2 trái dấu và nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm.
Vậy các giá trị k cần tìm là các giá trị k sao cho –1 < k < 0.
Lời giải SBT Toán 9 Bài 3: Định lí Viète hay khác:
Bài 24 trang 70 SBT Toán 9 Tập 2: Không tính ∆, giải các phương trình: a) ....
Bài 25 trang 71 SBT Toán 9 Tập 2: Cho phương trình a) Chứng tỏ rằng phương trình có hai nghiệm ....
Bài 29 trang 71 SBT Toán 9 Tập 2: Tìm các số x, y với x<y thoả mãn: a) x + y = 16 và xy = 15 ....
Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
SBT Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
SBT Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Cánh diều
- Giải SBT Toán 9 Cánh diều
- Giải lớp 9 Cánh diều (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều