Cho phương trình x^2 + 2(k + 1)x + k^2 + 2k = 0 trang 71 SBT Toán 9 Tập 2

Giải SBT Toán 9 Bài 3: Định lí Viète - Cánh diều

Bài 28 trang 71 SBT Toán 9 Tập 2: Cho phương trình x2 + 2(k + 1)x + k2 + 2k = 0.

a) Tìm các giá trị k để phương trình luôn có hai nghiệm x1, x2 và |x1|.|x2| = 1.

b*) Tìm các giá trị k (k < 0) để phương trình luôn có hai nghiệm x1, x2 trái dấu và nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm.

Quảng cáo

Lời giải:

a) Phương trình có: ∆=(k + 1)2 (k2 + 2k) = k2 + 2k + 1 – k2 – 2k = 1 > 0.

Do đó phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của k.

Theo định lí Viète, ta có: x1 + x2 = –2(k + 1) và x1x2 =k2 + 2k.

Theo bài, |x1|.|x2| = 1 ta có |x1x2| = 1.

Suy ra |k2 + 2k| = 1.

Do đó k2 + 2k = –1 hoặc k2 + 2k = 1.

Giải phương trình: k2 + 2k = –1

                                   k2 + 2k + 1 = 0

                                   (k + 1)2 = 0

                                   k + 1 = 0

                                   k = –1.

Giải phương trình: k2 + 2k = 1

                                   k2 + 2k – 1 = 0

Phương trình trên có ∆’ = 12 – 1.(–1) = 2 > 0.

Do đó phương trình này có hai nghiệm phân biệt là:

k=1+2 hoặc k=12.

Dễ thấy, nếu k=1,  k=1+2,  k=12 thì phương trình đã cho có hai nghiệm phân biệt x1, x2 thoả mãn |x1|.|x2| = 1.

Vậy k=1,  k=1+2,  k=12 là các giá trị cần tìm.

b*) Để phương trình đã cho có hai nghiệm trái dấu thì tích của hai nghiệm là số âm, do đó x1x2 < 0, tức là k2 + 2k < 0.

Giải bất phương trình:

          k2 + 2k < 0.

          k(k + 2) < 0

Suy ra k < 0 và k + 2 > 0 (do đề bài đã cho điều kiện k < 0).

          k < 0 và k > –2

          –2 < k < 0.

Do đó điều kiện để phương trình có hai nghiệm trái dấu là –2 < k < 0. (*)

Giả sử x1 < 0 < x2.

Để phương trình đã cho có nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm, tức là x2 < 0 < |x1|.

Mà x1 < 0 nên |x1| = –x1.

Khi đó, ta có x2 < –x1 hay x1 + x­2 < 0.

Tức là, –2(k + 1) < 0

                  k + 1 > 0

                  k > –1.  (**).

Kết hợp hai điều kiện (*) và (**), ta có –1 < k < 0.

Dễ thấy, với các giá trị k sao cho –1 < k < 0 thì phương trình đã cho luôn có hai nghiệm x1, x2 trái dấu và nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm.

Vậy các giá trị k cần tìm là các giá trị k sao cho –1 < k < 0.

Quảng cáo

Lời giải SBT Toán 9 Bài 3: Định lí Viète hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên