HĐ2 trang 46 Toán 10 Tập 2 - Kết nối tri thức

Giải Toán 10 Kết nối tri thức Bài 21: Đường tròn trong mặt phẳng tọa độ

Quảng cáo

HĐ2 trang 46 Toán 10 Tập 2: Cho đường tròn (C): (x – 1)2+ (y – 2)2 = 25 và điểm M(4; – 2).

a) Chứng minh điểm M(4; – 2) thuộc đường tròn (C). 

b) Xác định tâm và bán kính của (C).

c) Gọi ∆ là tiếp tuyến của (C) tại M. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng ∆ (H.7.16). Từ đó, viết phương trình đường thẳng ∆.

HĐ2 trang 46 Toán 10 Tập 2 | Kết nối tri thức Giải Toán 10

Quảng cáo


Lời giải:

a) Thay tọa độ điểm M(4; – 2) vào phương trình đường tròn (C) ta được: 

(4 – 1)2 + (– 2 – 2)2 = 25 ⇔ 32 + (– 4)2 = 25 ⇔ 25 = 25 (luôn đúng). 

Vậy điểm M(4; – 2) thuộc đường tròn (C). 

b) Đường tròn (C) có tâm I(1; 2) và bán kính R = 25 = 5. 

c) Ta có: ∆ ⊥ IM tại M (bán kính đi qua tiếp điểm thì vuông góc với tiếp tuyến tại tiếp điểm đó). 

Do đó một vectơ pháp tuyến của đường thẳng ∆ là vectơ IM=41;22=3;4.

Đường thẳng ∆ đi qua điểm M(4; – 2) và có một vectơ pháp tuyến IM=3;4 nên phương trình đường thẳng ∆ là: 3(x – 4) – 4(y + 2) = 0 hay 3x – 4y – 20 = 0. 

Quảng cáo

Lời giải bài tập Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ hay, chi tiết khác:

Quảng cáo

Các bài học để học tốt Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên