Luyện tập 4 trang 39 Toán 10 Tập 2 - Kết nối tri thức

Giải Toán 10 Kết nối tri thức Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Quảng cáo

Luyện tập 4 trang 39 Toán 10 Tập 2: Cho đường thẳng ∆: y = ax + b với a ≠ 0. 

a) Chứng minh rằng ∆ cắt trục hoành. 

b) Lập phương trình đường thẳng ∆0 đi qua O(0; 0) và song song (hoặc trùng) với ∆. 

c) Hãy chỉ ra mối quan hệ giữa α và α∆0

d) Gọi M là giao điểm của ∆0 với nửa đường tròn đơn vị và x0 là hoành độ của M. Tính tung độ của M theo x0 và a. Từ đó, chứng minh rằng tanα = a. 

Luyện tập 4 trang 39 Toán 10 Tập 2 | Kết nối tri thức Giải Toán 10

Quảng cáo


Lời giải:

a) Phương trình trục hoành Ox: y = 0. 

Xét hệ y=0y=ax+b

Khi đó ta có: ax + b = 0 ⇔ x = ba(do a ≠ 0). 

Do đó hệ trên có nghiệm duy nhất ba;0 nên ∆ và trục hoành cắt nhau tại giao điểm có tọa độ ba;0

b) Đường thẳng ∆ có vectơ pháp tuyến là n=a;  1

Do đường thẳng ∆0 song song hoặc trùng với ∆ nên ta chọn vectơ n là một vectơ pháp tuyến của ∆0

Đường thẳng ∆0 đi qua điểm O(0; 0) và nhận n=a;  1 làm vectơ pháp tuyến. 

Khi đó phương trình đường thẳng ∆0 là: a(x – 0) – (y – 0) = 0 hay ax – y = 0 hay y = ax. 

Quảng cáo

c) Khi ∆ và ∆0 trùng nhau thì α và α∆0 trùng nhau nên α = α∆0

Khi ∆ và ∆0 song song thì α = α∆0 (do hai góc ở vị trí đồng vị). 

Vậy α = α∆0.

d) Vì M thuộc đường thẳng ∆0 nên tọa độ điểm M thỏa mãn phương trình đường thẳng ∆0 nên khi có hoành độ x0 thì tung độ của M là y0 = ax0

Ta có tanα∆0 = tan∠xOM = y0x0=ax0x0=a (theo định nghĩa giá trị lượng giác)

Do α = α∆0 nên tanα = tanα∆0 = a. 

Vậy tanα = a. 

Quảng cáo

Lời giải bài tập Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên