Phương trình mặt phẳng (Lý thuyết Toán lớp 12) | Chân trời sáng tạo
Với tóm tắt lý thuyết Toán 12 Bài 1: Phương trình mặt phẳng sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 12 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.
Phương trình mặt phẳng (Lý thuyết Toán lớp 12) | Chân trời sáng tạo
Lý thuyết Phương trình mặt phẳng
1. Vectơ pháp tuyến và cặp vectơ chỉ phương của mặt phẳng
Cho mặt phẳng (α).
+) Nếu vectơ khác và có giá vuông góc với (α) thì được gọi là vectơ pháp tuyến của (α).
+) Nếu hai vectơ không cùng phương, có giá song song hoặc nằm trong (α) thì được gọi là cặp vectơ chỉ phương của (α).
Chú ý:
a) Một mặt phẳng hoàn toàn được xác định khi biết một điểm và một vectơ pháp tuyến của nó hoặc biết một điểm và một cặp vectơ chỉ phương của mặt phẳng đó.
b) Nếu là một vectơ pháp tuyến của mặt phẳng (α) thì (k ≠ 0) cũng là một vectơ pháp tuyến của (α).
Ví dụ 1. Cho hình hộp chữ nhật ABCD.A'B'C'D'.
a) Tìm cặp vectơ chỉ phương của mặt phẳng (A'B'C'D').
b) Tìm một vectơ pháp tuyến của mặt phẳng (A'B'C'D').
Hướng dẫn giải
a) Vì và không cùng phương và có giá nằm trong mặt phẳng (A'B'C'D') nên và là cặp vectơ chỉ phương của mặt phẳng (A'B'C'D').
b) Vì AA' (A'B'C'D') nên là một vectơ pháp tuyến của mặt phẳng (A'B'C'D').
2. Xác định vectơ pháp tuyến của mặt phẳng khi biết một cặp vectơ chỉ phương
Trong không gian Oxyz, nếu mặt phẳng (α) nhận hai vectơ làm cặp vectơ chỉ phương thì (α) nhận vectơ làm vectơ pháp tuyến.
Chú ý:
a) Vectơ được gọi là tích có hướng của hai vectơ và , kí hiệu là .
b) Biểu thức a1b2 – a2b1 thường được kí hiệu . Tương tự, , . Như vậy, ta có thể viết:
.
c) và cùng phương .
d) Nếu thì và .
Ví dụ 2. Cho mặt phẳng (P) nhận và làm cặp vectơ chỉ phương. Tìm một vectơ pháp tuyến của (P).
Hướng dẫn giải
Ta có tích có hướng của hai vectơ là
.
Do đó mặt phẳng (P) nhận làm một vectơ pháp tuyến.
3. Phương trình tổng quát của mặt phẳng
• Khái niệm phương trình tổng quát của mặt phẳng
Trong không gian Oxyz, mỗi mặt phẳng đều có phương trình dạng Ax + By + Cz + D = 0 trong đó A, B, C không đồng thời bằng 0, được gọi là phương trình tổng quát của mặt phẳng.
Nhận xét:
a) Mỗi phương trình Ax + By + Cz + D = 0 (trong đó A, B, C không đồng thời bằng 0) đều xác định một mặt phẳng nhận làm vectơ pháp tuyến.
b) Cho mặt phẳng (α) có phương trình tổng quát Ax + By + Cz + D = 0. Khi đó
N(x0; y0; z0) (α) Ax0 + By0 + Cz0 + D = 0.
Ví dụ 3. Cho mặt phẳng (P) có phương trình 5x – y + z + 3 = 0.
a) Tìm một vectơ pháp tuyến của (P).
b) Cho A(1; −1; −9). Chứng minh A (P).
Hướng dẫn giải
a) Mặt phẳng (P) có một vectơ pháp tuyến là .
b) Thay tọa độ điểm A vào phương trình mặt phẳng (P) ta được:
5.1 – (−1) – 9 + 3 = 0.
Do đó A (P).
• Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết vectơ pháp tuyến
Trong không gian Oxyz, phương trình mặt phẳng đi qua điểm M0(x0; y0; z0) và có vectơ pháp tuyến là A(x – x0) + B(y – y0) + C(z – z0) = 0 hay Ax + By + Cz + D = 0 với D = −Ax0 – By0 – Cz0.
Ví dụ 4. Viết phương trình mặt phẳng (P) đi qua điểm A(2; 0; 1) và có vectơ pháp tuyến .
Hướng dẫn giải
Mặt phẳng (P) đi qua điểm A(2; 0; 1) và có vectơ pháp tuyến có phương trình là 1(x – 2) – (y – 0) + 2(z – 1) = 0 x – y + 2z – 4 = 0.
• Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương
Để lập phương trình tổng quát của mặt phẳng (α) đi qua điểm M0(x0; y0; z0) và có cặp vectơ chỉ phương , ta thực hiện như sau:
+) Tìm một vectơ pháp tuyến .
+) Viết phương trình (α) đi qua M0(x0; y0; z0) và có vectơ pháp tuyến .
Ví dụ 5. Viết phương trình mặt phẳng (P) đi qua điểm A(2; 1; 3) và có cặp vectơ chỉ phương , .
Hướng dẫn giải
Vì (P) có có cặp vectơ chỉ phương , nên (P) có vectơ pháp tuyến .
Phương trình mặt phẳng (P) là:
2(x – 2) – 3(y – 1) – (z – 3) = 0 2x – 3y – z + 2 = 0.
• Lập phương trình tổng quát của mặt phẳng đi qua ba điểm không thẳng hàng
Để lập phương trình tổng quát của mặt phẳng (α) đi qua ba điểm A, B, C không thẳng hàng, ta thực hiện như sau:
+) Tìm cặp vectơ chỉ phương, chẳng hạn .
+) Tìm một vectơ pháp tuyến .
+) Viết phương trình (α) đi qua A và có vectơ pháp tuyến .
Ví dụ 6. Viết phương trình mặt phẳng (P) đi qua điểm 3 điểm M(1; 0; 2), N(3; 4; 1), P(−1; 1; 3).
Hướng dẫn giải
Vì (P) đi qua 3 điểm M, N, P nên mặt phẳng (P) có cặp vectơ chỉ phương là .
Mặt phẳng (P) nhận
làm vectơ pháp tuyến.
Phương trình mặt phẳng (P) là: (x – 1) + 2(z – 2) = 0 x + 2z – 5 = 0.
Nhận xét: Trong không gian Oxyz, cho ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c đều khác 0. Khi đó phương trình (ABC): . Phương trình này được gọi là phương trình mặt phẳng theo đoạn chắn.
4. Điều kiện để hai mặt phẳng song song, vuông góc
• Điều kiện để hai mặt phẳng song song
Trong không gian Oxyz, cho hai mặt phẳng (α1): A1x + B1y + C1z + D1 = 0 và (α2): A2x + B2y + C2z + D2 = 0 có vectơ pháp tuyến lần lượt là . Khi đó.
Chú ý:
+) .
+) (α1) cắt (α2) và không cùng phương.
Ví dụ 7. Mặt phẳng (P): x + 2y – z + 5 = 0 song song với mặt phẳng nào dưới đây?
a) (Q): 2x + 4y – 2z + 3 = 0.
b) (R): 4x + 8y – 4z + 20 = 0.
c) (H): x – 2y + z = 0.
Hướng dẫn giải
Các mặt phẳng (P), (Q), (R), (H) có vectơ pháp tuyến lần lượt là .
a) Ta có và 3 ≠ 2.5. Do đó (P) // (Q).
b) Ta có và 20 = 4.5. Do đó (P) ≡ (Q).
c) Ta có suy ra và không cùng phương. Vậy (P) cắt (H).
• Điều kiện để hai mặt phẳng vuông góc
Trong không gian Oxyz, cho hai mặt phẳng (α1): A1x + B1y + C1z + D1 = 0 và (α2): A2x + B2y + C2z + D2 = 0 có vectơ pháp tuyến lần lượt là .
Khi đó .
Ví dụ 8. Cho hai mặt phẳng (P): x + y – z + 5 = 0 và (Q): −2y – 2z + 3 = 0. Chứng minh (P) (Q).
Hướng dẫn giải
Mặt phẳng (P) và (Q) lần lượt có vectơ pháp tuyến là .
Có .
Vậy (P) (Q).
5. Khoảng cách từ một điểm đến một mặt phẳng
Trong không gian Oxyz, cho mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 và điểm M0(x0; y0; z0). Khoảng cách từ điểm M0 đến mặt phẳng (α) được tính theo công thức .
Ví dụ 9. Tính khoảng cách từ điểm M(1; −1; 0) đến mặt phẳng (P): −2x + y – z + 5 = 0.
Hướng dẫn giải
Ta có .
Bài tập Phương trình mặt phẳng
Bài 1. Trong không gian Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
A. x – 3y2 + z – 1 = 0.
B. x2 + 2y + 4z – 2 = 0.
C. 2x – 3y + 4z – 2024 = 0.
D. 2x – 3y + 4z2 – 2025 = 0.
Hướng dẫn giải
Đáp án đúng là: C
Dựa vào định nghĩa phương trình tổng quát của mặt phẳng, ta chọn đáp án C.
Bài 2. Trong không gian Oxyz, cho mặt phẳng (P): 3x – y + 2z – 1 = 0. Vectơ nào dưới đây không phải là một vectơ pháp tuyến của (P).
A. .
B. .
C. .
D. .
Hướng dẫn giải
Đáp án đúng là: B
Vectơ pháp tuyến của mặt phẳng (P) là .
là vectơ pháp tuyến của mặt phẳng (P).
là vectơ pháp tuyến của mặt phẳng (P).
Bài 3. Trong không gian với hệ trục tọa độ Oxyz,
a) Viết phương trình mặt phẳng đi qua điểm A(1; 2; −3), có vectơ pháp tuyến .
b) Viết phương trình mặt phẳng (Q) đi qua điểm A(0; −3; 2) và song song với mặt phẳng (P): 2x – y + 3z + 5 = 0.
Hướng dẫn giải
a) Mặt phẳng đi qua điểm A(1; 2; −3), có vectơ pháp tuyến có phương trình là 2(x – 1) – (y – 2) + 3(z + 3) = 0 2x – y + 3z + 9 = 0.
b) Vectơ pháp tuyến của mặt phẳng (P) là .
Vì (Q) // (P) nên mặt phẳng (Q) nhận vectơ pháp tuyến của (P) làm vectơ pháp tuyến.
Do đó mặt phẳng (Q) đi qua A(0; −3; 2), có vectơ pháp tuyến có phương trình là: 2(x – 0) – (y + 3) + 3(z – 2) = 0 2x – y + 3z – 9 = 0.
Bài 4. Trong không gian Oxyz, cho hai điểm A(0; 0; 1) và B(1; 2; 3).
a) Viết phương trình mặt phẳng (P) đi qua A và vuông góc với AB.
b) Tính khoảng cách từ điểm M(1; 2; 3) đến mặt phẳng (P).
Hướng dẫn giải
a) Có .
Mặt phẳng (P) vuông góc với AB nên mặt phẳng (P) nhận làm vectơ pháp tuyến.
Phương trình mặt phẳng (P) là: x + 2y + 2(z – 1) = 0 x + 2y + 2z – 2 = 0.
b) Ta có .
Bài 5. Một công trình đang xây dựng được gắn hệ trục Oxyz như hình vẽ dưới (đơn vị trên mỗi trục tọa độ là mét). Mỗi cột bê tông có dạng hình lăng trụ tứ giác đều và có tâm của mặt đáy trên lần lượt là A(3; 2; 3), B(6; 3; 3), C(9; 4; 2), .
a) Bốn điểm A, B, C và D có đồng phẳng không?
b) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).
Hướng dẫn giải
a) Có , .
Mặt phẳng (ABC) đi qua A(3; 2; 3) và nhận làm vectơ pháp tuyến có phương trình là –(x – 3) + 3(y – 2) = 0 x – 3y + 3 = 0.
Thay tọa độ điểm D vào phương trình mặt phẳng (ABC), ta được
.
Do đó D (ABC). Do đó A, B, C, D không đồng phẳng.
b) .
Học tốt Phương trình mặt phẳng
Các bài học để học tốt Phương trình mặt phẳng Toán lớp 12 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 12 Chân trời sáng tạo hay khác:
Lý thuyết Toán 12 Bài 2: Phương trình đường thẳng trong không gian
Lý thuyết Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST