Đường tiệm cận của đồ thị hàm số (Lý thuyết Toán lớp 12) | Kết nối tri thức
Với tóm tắt lý thuyết Toán 12 Bài 3: Đường tiệm cận của đồ thị hàm số sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 12 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.
Đường tiệm cận của đồ thị hàm số (Lý thuyết Toán lớp 12) | Kết nối tri thức
Lý thuyết Đường tiệm cận của đồ thị hàm số
1. Đường tiệm cận ngang
Đường thẳng y = y0 gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y = f(x) nếu hoặc .
Ví dụ 1. Tìm tiệm cận ngang của đồ thị hàm số .
Hướng dẫn giải
Ta có ; .
Vậy y = 0 là tiệm cận ngang của đồ thị hàm số.
2. Đường tiệm cận đứng
Đường thẳng x = x0 gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ví dụ 2. Tìm tiệm cận đứng của đồ thị hàm số .
Hướng dẫn giải
Ta có .
Do đó đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
3. Đường tiệm cận xiên
Đường thẳng y = ax + b (a ≠ 0) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số y = f(x) nếu hoặc .
Ví dụ 3. Tìm tiệm cận xiên của đồ thị hàm số .
Hướng dẫn giải
Ta có ;
.
Do đó y = 2x + 1 là tiệm cận xiên của đồ thị hàm số.
Chú ý:
Ta biết rằng nếu đường thẳng y = ax + b (a ≠ 0) là tiệm cận xiên của đồ thị hàm số y = f(x) thì hoặc .
Do đó hoặc .
Từ đây suy ra hoặc .
Khi đó, ta có hoặc .
Ngược lại, với a và b xác định như trên, đường thẳng y = ax + b (a ≠ 0) là một tiệm cận xiên của đồ thị hàm số y = f(x). Đặc biệt, nếu a = 0 thì đồ thị hàm số có tiệm cận ngang.
Ví dụ 4. Tìm tiệm cận xiên của đồ thị hàm số .
Hướng dẫn giải
Ta có ; .
Tương tự ; .
Vậy đồ thị hàm số f(x) có tiệm cận xiên là đường thẳng y = x – 3.
Nhận xét:
Trong thực hành, để tìm tiệm cận xiên của hàm phân thức trong ví dụ 4, ta viết:
.
Ta có ; .
Vậy đồ thị hàm số f(x) có tiệm cận xiên là đường thẳng y = x – 3.
Bài tập Đường tiệm cận của đồ thị hàm số
Bài 1. Đồ thị hàm số có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
A. x = −2 và y = −3. B. x = −2 và y = 1.
C. x = −2 và y = 3. D. x = 2 và y = 1.
Hướng dẫn giải
Đáp án đúng là: A
Có
Do đó x = −2 là tiệm cận đứng của đồ thị hàm số.
Có .
Do đó y = −3 là tiệm cận ngang của đồ thị hàm số.
Bài 2. Cho hàm số y = f(x) có bảng biến thiên như sau
Trong các mệnh đề sau về hàm số y = f(x), mệnh đề nào đúng?
A. Đồ thị hàm số có tiệm cận đứng x = 1.
B. Hàm số nghịch biến trên ℝ.
C. Hàm số đồng biến trên ℝ.
D. Hàm số có một điểm cực trị.
Hướng dẫn giải
Đáp án đúng là: A
Dựa vào bảng biến thiên, ta có:
+) Hàm số nghịch biến trên các khoảng (−∞; 1) và (1; +∞).
+) Hàm số không có cực trị
+) Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số và đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Bài 3. Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số .
Hướng dẫn giải
Tập xác định: D = ℝ\{−1}.
Do đó đường thẳng x = −1 là tiệm cận đứng của đồ thị hàm số.
.
Do đó đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Bài 4. Tìm tiệm cận đứng và tiệm cận xiên của đồ thị hàm số .
Hướng dẫn giải
Tập xác định: D = ℝ\{−1}.
Có
Do đó đường thẳng x = −1 là tiệm cận đứng của đồ thị hàm số.
Có .
Có
.
Do đó đường thẳng y = x là tiệm cận xiên của đồ thị hàm số.
Bài 5. Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức (f(t) được tính bằng nghìn người).
Xem y = f(t) là một hàm số xác định trên nửa khoảng [0; +∞). Hãy tìm các đường tiệm cận của đồ thị hàm số.
Hướng dẫn giải
Ta có .
Do đó y = 26 là tiệm cận ngang của đồ thị hàm số.
Trên nửa khoảng [0; +∞) đồ thị hàm số không có tiệm cận đứng.
Học tốt Đường tiệm cận của đồ thị hàm số
Các bài học để học tốt Đường tiệm cận của đồ thị hàm số Toán lớp 12 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 12 Kết nối tri thức hay khác:
Lý thuyết Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Lý thuyết Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT