Giải Toán 7 trang 64 Tập 2 Kết nối tri thức

Với Giải Toán 7 trang 64 Tập 2 trong Bài 32: Quan hệ đường vuông góc và đường xiên Toán 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 64.

Giải Toán 7 trang 64 Tập 2 Kết nối tri thức

HĐ trang 64 Toán 7 Tập 2: Cho điểm A không nằm trên đường thẳng d.

a) Hãy vẽ đường vuông góc AH và một đường xiên AM từ A đến d.

b) Em hãy giải thích vì sao AH < AM.

Quảng cáo

Lời giải:

a)

Cho điểm A không nằm trên đường thẳng d

b) Do AH ⊥ d nên AHM^ = 90o.

Xét ∆AHM có AHM^ = 90o nên AHM^ là góc lớn nhất trong ∆AHM.

Do đó AM là cạnh lớn nhất trong ∆AHM.

Do đó AH < AM.

Luyện tập trang 64 Toán 7 Tập 2: Cho hình vuông ABCD có độ dài cạnh bằng 2 cm, M là một điểm trên cạnh BC như Hình 9.10.

a) Hãy chỉ ra các đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng BC.

b) So sánh hai đoạn thẳng AB và AM.

c) Tìm khoảng cách từ điểm C đến đường thẳng AB.

Cho hình vuông ABCD có độ dài cạnh bằng 2 cm, M là một điểm trên cạnh BC như Hình 9.10

Quảng cáo

Lời giải:

a) Đường vuông góc kẻ từ A đến đường thẳng BC là AB.

Đường xiên kẻ từ A đến đường thẳng BC là AM.

b) Do AM là đường xiên kẻ từ A đến BC và AB là đường vuông góc kẻ từ A đến BC nên AM > AB.

c) Khoảng cách từ C đến đường thẳng AB bằng độ dài đoạn BC.

Do ABCD là hình vuông nên BC = AD = 2 cm.

Vậy khoảng cách từ C đến đường thẳng AB bằng 2 cm.

Vận dụng trang 64 Toán 7 Tập 2: Em hãy trả lời câu hỏi trong tình huống mở đầu.

Quảng cáo

Lời giải:

Ta có OA là đường vuông góc kẻ từ O đến AC.

OB và OC là các đường xiên kẻ từ O đến AC nên OB > OA và OC > OA.

Do đó để bơi sang bờ bên kia nhanh nhất thì Nam nên chọn đường bơi OA.

Thử thách nhỏ trang 64 Toán 7 Tập 2: a) Quan sát Hình 9.11, ta thấy khi M thay đổi trên d, M càng xa H thì độ dài AM càng lớn, tức là nếu HM < HN thì AM < AN. Hãy chứng minh khẳng định này nhờ quan hệ giữa góc và cạnh đối diện trong tam giác AMN.

Quan sát Hình 9.11, ta thấy khi M thay đổi trên d, M càng xa H thì độ dài AM càng lớn

b) Xét hình vuông ABCD và một điểm M tùy ý nằm trên các cạnh của hình vuông. Hỏi với vị trí nào của M thì AM lớn nhất? Vì sao?

Quảng cáo

Lời giải:

a) Với HM < HN ta có AMN^ là góc ngoài tại đỉnh M của ∆AHM do đó AMN^=AHM^+HAM^>AHM^.

Do đó AMN^ là góc tù.

∆AMN có AMN^ là góc tù nên AMN^ là góc lớn nhất trong ∆AMN.

Do đó AN là cạnh lớn nhất trong ∆AMN hay AM < AN.

b)

Quan sát Hình 9.11, ta thấy khi M thay đổi trên d, M càng xa H thì độ dài AM càng lớn

Nếu M nằm trên AB hoặc AD thì AM ≤ AB (1).

Nếu M nằm trên BC hoặc CD thì AM ≤ AC (2).

Ta có AB là đường vuông góc kẻ từ A đến BC, AC là đường xiên kẻ từ A đến BC nên AC > AB.

Do đó từ (1) và (2) suy ra AM lớn nhất bằng AC.

Khi đó M trùng C.

Vậy M trùng C thì AM lớn nhất.

Lời giải bài tập Toán 7 Bài 32: Quan hệ đường vuông góc và đường xiên hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên