Cách tìm tập xác định của phương trình (hay, chi tiết)



Bài viết Cách tìm tập xác định của phương trình với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm tập xác định của phương trình.

Cách tìm tập xác định của phương trình hay, chi tiết

Lý thuyết & Phương pháp giải

Quảng cáo

1. Khái niệm phương trình một ẩn

Cho hai hàm số y = f(x) và y = g(x) có tập xác định lần lượt là Df và Dg.

Đặt D = Df ∩ Dg. Mệnh đề chứa biến "f(x) = g(x)" được gọi là phương trình một ẩn, x gọi là ẩn và D gọi tập xác định của phương trình.

Số x0 ∈ D gọi là một nghiệm của phương trình f(x) = g(x) nếu "f(xo) = g(xo)" là một mệnh đề đúng.

2. Phương trình tương đương

Hai phương trình gọi là tương đương nếu chúng có cùng một tập nghiệm. Nếu phương trình f1(x) = g1(x) tương đương với phương trình f2(x) = g2(x) thì viết

f1(x) = g1(x) ⇔ f2(x) = g2(x)

Định lý 1: Cho phương trình f(x) = g(x) có tập xác định D và y = h(x) là một hàm số xác định trên D. Khi đó trên miền D, phương trình đã cho tương đương với mỗi phương trình sau:

    (1): f(x) + h(x) = g(x) + h(x)

    (2): f(x).h(x) = g(x).h(x) với h(x) ≠ 0, ∀x ∈ D.

3. Phương trình hệ quả

Phương trình f1(x) = g1(x) có tập nghiệm là S1 được gọi là phương trình hệ quả của phương trình f2(x) = g2(x) có tập nghiệm S2 nếu S1 ⊂ S2.

Khi đó viết:

f1(x) = g1(x) ⇒ f2(x) = g2(x)

Định lý 2: Khi bình phương hai vế của một phương trình, ta được phương trình hệ quả của phương trình đã cho: f(x) = g(x) ⇒ [f(x)]2 = [g(x)]2.

Lưu ý:

    + Nếu hai vế của 1 phương trình luôn cùng dấu thì khi bình phương 2 vế của nó, ta được một phương trình tương đương.

    + Nếu phép biến đổi tương đương dẫn đến phương trình hệ quả, ta phải thử lại các nghiệm tìm được vào phương trình đã cho để phát hiện và loại bỏ nghiệm ngoại lai.

4. Phương pháp giải tìm tập xác định của phương trình

- Điều kiện xác định của phương trình bao gồm các điều kiện để giá trị của f(x), g(x) cùng được xác định và các điều kiện khác (nếu có yêu cầu trong đề bài).

- Điều kiện để biểu thức

    +  √(f(x)) xác định là f(x) ≥ 0

    +  1/f(x) xác định là f(x) ≠ 0

    +  1/√(f(x)) xác định là f(x) > 0

Quảng cáo

Ví dụ minh họa

Bài 1: Khi giải phương trình √(x2 - 5) = 2 - x  (1), một học sinh tiến hành theo các bước sau:

Bước 1: Bình phương hai vế của phương trình (1) ta được:

x2 - 5 = (2 - x)2     (2)

Bước 2: Khai triển và rút gọn (2) ta được 4x = 9

Bước 3: (2) ⇔ x = 9/4

Vậy phương trình có một nghiệm là x = 9/4

Cách giải trên đúng hay sai? Nếu sai thì sai ở bước nào?

Lời giải:

Vì phương trình (2) là phương trình hệ quả nên ta cần thay nghiệm x = 9/4 vào phương trình (1) để thử lại. Nên sai ở bước thứ 3.

Bài 2: Khi giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánmột học sinh tiến hành theo các bước sau:

Bước 1:Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bước 2:Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bước 3: ⇔ x = 3 ∪ x = 4

Bước 4: Vậy phương trình có tập nghiệm là: T = {3; 4}

Cách giải trên sai từ bước nào?

Lời giải:

Vì biến đổi tương đương mà chưa đặt điều kiên nên sai ở bước 2.

Quảng cáo

Bài 3: Tìm tập xác định của phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Điều kiện xác định: x2 + 1 ≠ 0 (luôn đúng)

Vậy TXĐ: D = R.

Bài 4: Tìm tập xác định của phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Điều kiện xác định:Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy TXĐ: R\{-2; 0; 2}

Bài 5: Tìm tập xác định của phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Điều kiện xác định:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 6: Tìm điều kiện xác định của phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Điều kiện xác định: 4 - 5x > 0 ⇔ x < 4/5 (luôn đúng)

Vậy TXĐ: D = (-∞; 4/5)

Quảng cáo

Bài 7: Tìm điều kiện xác định của phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Điều kiện xác định:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy TXĐ: D = [2; 7/2)\{3}

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-trinh-he-phuong-trinh.jsp


Giải bài tập lớp 10 sách mới các môn học
Tài liệu giáo viên