Cách giải và biện luận phương trình bậc nhất (cực hay, chi tiết)



Bài viết Cách giải và biện luận phương trình bậc nhất với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải và biện luận phương trình bậc nhất.

Cách giải và biện luận phương trình bậc nhất (cực hay, chi tiết)

Lý thuyết & Phương pháp giải

Quảng cáo

Cách giải và biện luận phương trình dạng ax+b=0 được tóm tắt trong bảng sau

ax + b = 0  (1)
Hệ số Kết luận
a ≠ 0(1) có nghiệm duy nhất x = -b/a
a = 0b ≠ 0(1) vô nghiệm
b = 0(1) nghiệm đúng với mọi x

Khi a ≠ 0 phương trình ax + b = 0 được gọi là phương trình bậc nhất một ẩn

Ví dụ minh họa

Bài 1: Cho phương trình (m2 - 7m + 6)x + m2 - 1 = 0

a. Giải phương trình khi m = 0

b. Biện luận theo m số nghiệm của phương trình

Lời giải:

a. Với m = 0 phương trình trở thành 6x - 1 = 0 ⇔ x = 1/6

Phương trình có nghiệm duy nhất x = 1/6

b. Ta có (m2 - 7m + 6)x + m2 - 1 = 0 ⇔ (m-1)(m-6)x + (m-1)(m+1) = 0

Nếu (m-1)(m-6) ≠ 0 Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánthì phương trình có nghiệm duy nhất x = -(m+1)/(m-6)

Nếu m = 1 phương trình trở thành 0 = 0. Khi đó phương trình có vô số nghiệm.

Nếu m = 6 thì phương trình trở thành 35 = 0 (Vô lí). Khi đó phương trình vô nghiệm.

Quảng cáo

Bài 2: Tìm tất cả các giá trị thực của tham số m để phương trình (2m - 4)x = m - 2 có nghiệm duy nhất.

Lời giải:

Phương trình đã cho có nghiệm duy nhất khi 2m - 4 ≠ 0 ⇔ m ≠ 2

Bài 3: Tìm tất cả các giá trị thực của tham số m để phương trình (m2 - 5m + 6)x = m2 - 2m vô nghiệm.

Lời giải:

Phương trình đã cho vô nghiệm khi

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 4: Tìm tất cả các giá trị thực của tham số m để phương trình (m2 - 1)x = m - 1 có nghiệm đúng với mọi x thuộc R.

Lời giải:

Phương trình đã cho nghiệm đúng với ∀x ∈ R hay phương trình có vô số nghiệm khi

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 5: Cho phương trình m2x + 6 = 4x + 3m. Tìm tất cả các giá trị thực của tham số m để phương trình đã cho có nghiệm.

Lời giải:

Phương trình viết lại (m2 - 4)x = 3m - 6.

Phương trình đã cho vô nghiệm khi

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Do đó, phương trình đã cho có nghiệm khi m ≠ -2

Bài 6: Cho hai hàm số y = (m + 1)2x - 2 và y = (3m + 7)x + m. Tìm tất cả các giá trị của tham số m để đồ thị hai hàm số đã cho cắt nhau.

Lời giải:

Đồ thị hai hàm số cắt nhau khi và chỉ khi phương trình

(m + 1)2x - 2 = (3m + 7)x + m có nghiệm duy nhất

⇔ (m2 - m - 6)x = 2 + m có nghiệm duy nhất

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án
Quảng cáo

Bài 7: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10; 10] để phương trình (m2 - 9)x = 3m(m - 3) có nghiệm duy nhất ?

Lời giải:

Phương trình đã cho có nghiệm duy nhất khi m2-9 ≠ 0 ⇔ m ≠ ±3

Vì m ∈ Z, m ∈ [-10; 10] nên

m ∈ {-10; -9; -8;...; -4; -2; -1; 0; 1; 2; 4;...; 10}

Vậy 19 giá trị của tham số m thỏa mãn yêu cầu bài toán.

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-trinh-he-phuong-trinh.jsp


Giải bài tập lớp 10 sách mới các môn học
Tài liệu giáo viên