Lý thuyết Giới hạn của hàm số lớp 11 (hay, chi tiết)



Bài viết Lý thuyết Giới hạn của hàm số lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Giới hạn của hàm số.

Lý thuyết Giới hạn của hàm số

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Bài giảng: Bài 2: Giới hạn của hàm số - Thầy Lê Thành Đạt (Giáo viên VietJack)

I. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM

Quảng cáo

1. Định nghĩa

Định nghĩa 1

Cho khoảng K chứa điểm x0 và hàm số y = f(x) xác định trên K hoặc trên K \ {x0}.

Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới x0 nếu với dãy số (xn) bất kì, xn ∈ K \{x0} và xn → x0, ta có f(xn) → L.

Kí hiệu: Các dạng bài tập Toán 11 (có lời giải) hay f(x) → L khi x → x0.

Nhận xét: Các dạng bài tập Toán 11 (có lời giải) với c là hằng số.

2. Định lí về giới hạn hữu hạn

Định lí 1

Các dạng bài tập Toán 11 (có lời giải)

3. Giới hạn một bên

Định nghĩa 2

- Cho hàm số y = f(x) xác định trên (x0; b).

Số L được gọi là giới hạn bên phải của hàm số y = f(x) khi x → x0 nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L.

Kí hiệu: Các dạng bài tập Toán 11 (có lời giải)

- Cho hàm số y = f(x) xác định trên (a; x0).

Số L được gọi là giới hạn bên trái của hàm số y = f(x) khi x → x0 nếu với dãy số (xn) bất kì, a < xn < x0 và xn → x0, ta có f(xn) → L.

Kí hiệu: Các dạng bài tập Toán 11 (có lời giải)

Định lí 2

Các dạng bài tập Toán 11 (có lời giải)

Quảng cáo

II. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI VÔ CỰC

Định nghĩa 3

a) Cho hàm số y = f(x) xác định trên (a; +∞).

Ta nói hàm số y = f(x) có giới hạn là số L khi x → +∞ nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L.

Kí hiệu: Các dạng bài tập Toán 11 (có lời giải)

b) Cho hàm số y = f(x) xác định trên (–∞; a).

Ta nói hàm số y = f(x) có giới hạn là số L khi x → –∞ nếu với dãy số (xn) bất kì, xn < a và xn → –∞, ta có f(xn) → L.

Kí hiệu: Các dạng bài tập Toán 11 (có lời giải)

Chú ý:

a) Với c, k là hằng số và k nguyên dương, ta luôn có:

Các dạng bài tập Toán 11 (có lời giải)

b) Định lí 1 về giới hạn hữu hạn của hàm số khi x → x0 vẫn còn đúng khi xn → +∞ hoặc x → –∞

Quảng cáo

III. GIỚI HẠN VÔ CỰC CỦA HÀM SỐ

1. Giới hạn vô cực

Định nghĩa 4

Cho hàm số y = f(x) xác định trên (a; +∞).

Ta nói hàm số y = f(x) có giới hạn là –∞ khi x → +∞ nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → –∞

Các dạng bài tập Toán 11 (có lời giải)

2. Một vài giới hạn đặc biệt

Các dạng bài tập Toán 11 (có lời giải)

3. Một vài quy tắc về giới hạn vô cực

a) Quy tắc tìm giới hạn của tích f(x).g(x)

Các dạng bài tập Toán 11 (có lời giải) Các dạng bài tập Toán 11 (có lời giải) Các dạng bài tập Toán 11 (có lời giải)
L > 0 +∞ +∞
–∞ –∞
L < 0 +∞ –∞
–∞ +∞

b) Quy tắc tìm giới hạn của thương Các dạng bài tập Toán 11 (có lời giải)

Các dạng bài tập Toán 11 (có lời giải) Các dạng bài tập Toán 11 (có lời giải) Dấu của g(x) Các dạng bài tập Toán 11 (có lời giải)
L ± ∞Tùy ý 0
L > 0 0 +∞ +∞
–∞ –∞
L < 0 +∞ –∞
–∞ +∞
Quảng cáo

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Xem thêm các bài lý thuyết Toán lớp 11 chi tiết khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


tong-hop-ly-thuyet-chuong-gioi-han.jsp


Giải bài tập lớp 11 sách mới các môn học