30+ dạng bài Đạo hàm (chọn lọc, có lời giải)
Tổng hợp các dạng bài tập Đạo hàm lớp 11 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Đạo hàm.
30+ dạng bài Đạo hàm (chọn lọc, có lời giải)
Tính đạo hàm bằng định nghĩa (tại một điểm và trên một khoảng)
Phương trình tiếp tuyến của đồ thị hàm số tại một điểm thuộc đồ thị
Sử dụng công thức tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm số hợp
Vận dụng các quy tắc tính đạo hàm để giải các bài toán thực tiễn
Xem thêm các dạng bài tập Toán 11 sách mới:
- (Chuyên đề) Các dạng bài tập Hàm số lượng giác, phương trình lượng giác
- (Chuyên đề) Các dạng bài tập Dãy số, Cấp số cộng và cấp số nhân
- (Chuyên đề) Các dạng bài tập Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm
- (Chuyên đề) Các dạng bài tập Quan hệ song song trong không gian
- (Chuyên đề) Các dạng bài tập Giới hạn. Hàm số liên tục
- (Chuyên đề) Các dạng bài tập Hàm số liên tục
- (Chuyên đề) Các dạng bài tập Vectơ trong không gian. Quan hệ vuông góc trong không gian
- (Chuyên đề) Các dạng bài tập Quan hệ vuông góc trong không gian
- Các dạng bài tập Đạo hàm
- (Chuyên đề) Các dạng bài tập Hàm số mũ & Hàm số lôgarit
- Chuyên đề Các quy tắc tính xác suất
- Các dạng bài tập Xác suất
Lưu trữ: Các dạng bài tập Đạo hàm (sách cũ)
Tổng hợp lý thuyết chương Đạo hàm
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm Xem chi tiết
- Lý thuyết Quy tắc tính đạo hàm Xem chi tiết
- Lý thuyết Đạo hàm của hàm số lượng giác Xem chi tiết
- Lý thuyết Vi phân Xem chi tiết
- Lý thuyết Đạo hàm cấp hai Xem chi tiết
- Lý thuyết Tổng hợp chương Đạo hàm Xem chi tiết
Các dạng bài tập chương Đạo hàm
Cách tính Đạo hàm
- Cách tính đạo hàm bằng định nghĩa hay, chi tiết
- Quy tắc tính đạo hàm và cách giải bài tập
- Đạo hàm của hàm số lượng giác và cách giải
- Ứng dụng Đạo hàm để giải phương trình, bất phương trình
- Các bài toán về vi phân, đạo hàm cấp cao và ý nghĩa của đạo hàm
- Các dạng bài tập về tiếp tuyến lớp 11 và cách giải
- Lý thuyết Đạo hàm chi tiết Xem chi tiết
- Dạng 1: Tính đạo hàm bằng định nghĩa Xem chi tiết
- Dạng 2: Tính đạo hàm bằng công thức Xem chi tiết
- Dạng 3: Tính đạo hàm của hàm số lượng giác Xem chi tiết
- Cách tính đạo hàm bằng định nghĩa Xem chi tiết
- Đạo hàm của các hàm số đơn giản Xem chi tiết
- Đạo hàm của hàm hợp Xem chi tiết
- Đạo hàm và các bài toán giải phương trình, bất phương trình Xem chi tiết
- Tính đạo hàm tại 1 điểm Xem chi tiết
- Tính đạo hàm của hàm số lượng giác Xem chi tiết
- Đạo hàm và bài toán giải phương trình, bất phương trình lượng giác Xem chi tiết
- 60 bài tập trắc nghiệm Đạo hàm có đáp án (phần 1) Xem chi tiết
- 60 bài tập trắc nghiệm Đạo hàm có đáp án (phần 2) Xem chi tiết
Viết phương trình Tiếp tuyến
- Dạng 1: Viết phương trình tiếp tuyến khi biết tiếp điểm Xem chi tiết
- Dạng 2: Viết phương trình tiếp tuyến khi biết hệ số góc Xem chi tiết
- Dạng 3: Viết phương trình tiếp tuyến đi qua một điểm Xem chi tiết
- Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm Xem chi tiết
- Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc Xem chi tiết
- Viết phương trình tiếp tuyến của đồ thị hàm số đi qua 1 điểm Xem chi tiết
- Viết phương trình tiếp tuyến thỏa mãn điều kiện cho trước Xem chi tiết
- 60 bài tập trắc nghiệm Viết phương trình tiếp tuyến có đáp án (phần 1) Xem chi tiết
- 60 bài tập trắc nghiệm Viết phương trình tiếp tuyến có đáp án (phần 2) Xem chi tiết
Vi phân, đạo hàm cấp cao & ý nghĩa của đạo hàm
- Dạng 1: Tìm vi phân của hàm số Xem chi tiết
- Dạng 2: Tìm đạo hàm cấp cao của hàm số Xem chi tiết
- Dạng 3: Ý nghĩa của đạo hàm Xem chi tiết
- 40 bài tập trắc nghiệm Vi phân, đạo hàm cấp cao và ý nghĩa của đạo hàm có đáp án Xem chi tiết
- Cách tìm vi phân của hàm số Xem chi tiết
- Đạo hàm cấp cao của hàm số Xem chi tiết
- Ý nghĩa vật lí của đạo hàm Xem chi tiết
Cách tính đạo hàm bằng công thức
A. Phương pháp giải & Ví dụ
1. Công thức
2. Đạo hàm của tổng, hiệu, tích, thương
3.Đạo hàm của hàm hợp
y'x = y'u.u'x
Ví dụ minh họa
Bài 1: Đạo hàm của hàm số bằng biểu thức nào?
Hướng dẫn:
Ta có
Bài 2: Đạo hàm của hàm số y = 5x + 3x(x + 1) – 5 tại x = 0 bằng bao nhiêu?
Hướng dẫn:
Ta có: y = 3x2 + 8x - 5 ⇒ y' = 6x + 8
Vậy y’(0) = 8
Bài 3: Đạo hàm của hàm số y = 3x5 - 2x4 tại x = -1, bằng bao nhiêu?
Hướng dẫn:
y' = 15x4 - 8x3 ⇒ y’(-1) = 15 + 8 = 23
Bài 4: Đạo hàm của hàm số bằng biểu thức nào?
Hướng dẫn:
Ta có:
Cách tính đạo hàm của hàm số lượng giác
A. Phương pháp giải & Ví dụ
Ví dụ minh họa
Bài 1: Đạo hàm của hàm số:
bằng bao nhiêu?
Hướng dẫn:
Bài 2: Tính đạo hàm của hàm số y = cos2x + cos4x + sin5x
Hướng dẫn:
Ta có: y' = -2sin2x - 4sin4x + 5cos5x
Bài 3: Đạo hàm của hàm số y = √cosx bằng biểu thức nào?
Hướng dẫn:
Viết phương trình tiếp tuyến khi biết tiếp điểm
A. Phương pháp giải & Ví dụ
- Đường cong (C): y = f(x) có tiếp tuyến tại điểm có hoành độ xo khi và chỉ khi hàm số y = f(x) khả vi tại xo. Trong trường hợp (C) có tiếp tuyến tại điểm có hoành độ xothì tiếp tuyến đó có hệ số góc f ’(xo)
- Phương trình tiếp tuyến của đồ thị (C): y = f(x) tại điểm M(xo; f(xo)) có dạng :
y = f’(xo)(x-xo) + f(xo)
Bài toán 1. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M(xo; f(xo))
Giải: Tiếp tuyến của đồ thị hàm số y = f(x) tại M(xo;f(xo)) là:
y = f’(xo)(x-xo)+f(xo) (1)
Bài toán 2. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) biết hoành độ tiếp điểm x = xo
Giải:
Tính yo = f(xo) và f’(xo). Từ đó suy ra phương trình tiếp tuyến:
y = f’(xo)(x-xo) + yo
Bài toán 3. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) biết tung độ tiếp điểm bằng yo
Giải. Gọi M(xo, yo) là tiếp điểm
Giải phương trình f(x) = yo ta tìm được các nghiệm xo.
Tính y’(xo) và thay vào phương trình (1)
Ví dụ minh họa
Bài 1: Cho hàm số y = x3+3x2+1 có đồ thị là (C). Viết phương trình tiếp tuyến của (C) :
1. Tại điểm M( -1;3)
2. Tại điểm có hoành độ bằng 2
Hướng dẫn:
Hàm số đã cho xác định D = R
Ta có: y’ = 3x2 + 6x
1. Ta có: y’(-1) = -3, khi đó phương trình tiếp tuyến tại M là:
y = -3.(x + 1) + 3 = - 3x
2. Thay x = 2 vào đồ thị của (C) ta được y = 21
Tương tự câu 1, phương trình là:
y = y’(2).(x – 2) + 21 = 24x – 27
Bài 2: Gọi (C) là đồ thị của hàm số . Gọi M là một điểm thuộc (C) có khoảng cách đến trục hoành độ bằng 5. Viết phương trình tiếp tuyến của (C) tại M
Hướng dẫn:
Khoảng cách từ M đến trục Ox bằng 5 ⇔ yM = ±5.
Phương trình tiếp tuyến của (C) tại điểm M(-7/3,-5) là y = 9x + 16
Phương trình tiếp tuyến của (C) tại điểm M( - 4, 5) là y = 4x + 21
Bài 3: Cho hàm số y = x3 + 3x2 – 6x + 1 (C)
Viết phương trình tiếp tuyến của đồ thị (C) biết hoành độ tiếp điểm bằng 1
Hướng dẫn:
Gọi M(xo; yo) là tọa độ tiếp điểm.
Ta có xo = 1 ⇒ yo = - 1
y = x3 + 3x2 – 6x + 1 nên y’ = 3x2 + 6x – 6.
Từ đó suy ra y’(1) = 3.
Vậy phương trình tiếp tuyến cần tìm là y = 3(x – 1) – 1 = 3x – 4
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Chuyên đề: Hàm số lượng giác - phương trình lượng giác
- Chuyên đề: Tổ hợp - Xác suất
- Chuyên đề: Dãy số - Cấp số cộng và cấp số nhân
- Chuyên đề: Giới hạn
- Chuyên đề: Phép dời hình và phép đồng dạng trong mặt phẳng
- Chuyên đề: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
- Chuyên đề: Vectơ trong không gian. Quan hệ vuông góc trong không gian
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều