Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Bài viết Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác.

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

A. Phương pháp giải

Quảng cáo

+ Bước 1: Tính đạo hàm của hàm số .

+ Bước 2: Thiết lập phương trình; bất phương trình

+ Bước 3: Áp dụng cách giải phương trình ; bất phương trình lượng giác đã được học

B. Ví dụ minh họa

Ví dụ 1. Cho f(x)= sin 2x. Giải phương trình f' ( x)=0?

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

+ Ta có đạo hàm: f,m ' (x)=2cos2x

+ Để f' ( x)=0 ⇔ 2.cos2x= 0 hay cos2x= 0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Ví dụ 2.Cho hàm số; y=tan⁡( x+ π/3). Giải bất phương trình y’> 0.

A. x≠π/6+kπ        B. x≠π/6+k2π        C. x≠π/3+kπ        D. Tất cả sai

Hướng dẫn giải

+ Điều kiện : x+ π/3≠π/2+kπ hay x≠π/6+kπ

+ Với mọi x thỏa mãn điều kiện xác định ta có đạo hàm:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Ví dụ 3. Cho hàm số: y= sinx+ cosx. Tìm nghiệm của phương trình y'=0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Ví du 4. Cho hàm số: y= tanx+ cot x. Giải phương trình y'=0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Ví du 5. Cho hàm số: y=2 cos⁡( 2x- π/3). Giải phương trình y'=4

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Đạo hàm của hàm số đã cho :

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Ví dụ 6 Cho hàm số y= x+ sin 2x. Giải phương trình y'= 0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Đạo hàm của hàm số là : y'=1+2cos2x

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Ví dụ 7.Cho hàm số y= 3x+ 1 – cos2x. Tập nghiệm của bất phương trình y'>0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Quảng cáo

Hướng dẫn giải

Hàm số đã cho xác định với mọi x.

Ta có đạo hàm: y'=3+2sin2x

Với mọi x ta luôn có: - 1 ≤sin⁡2x ≤1 ⇔ - 2 ≤2sin2x ≤2

⇔ ≤3+2sin2x ≤5

⇒ Với mọi x ta luôn có: y'>0

Vậy tập nghiệm của bất phương trình là R.

Chọn D.

Ví dụ 8. Cho hàm số y=x3+ 3x+ sin3 x. Giải bất phương trình y' ≥0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Ta có đạo hàm: y'=3x2+ 3+ 3sin2x. cosx

Với mọi x ta có; cosx ≥ - 1 ⇒ 3sin2 x.cosx ≥ - 3.sin2 x

⇒ 3+ 3sin2x.cosx ≥ 3- 3.sin2 x ⇔ 3+ 3sin2x.cosx ≥ 3.cos2x ( 1)

Lại có 3x2 ≥0 ∀ x (2)

Từ( 1) và ( 2) vế cộng vế ta có:

y'=3x2+ 3+ 3sin2x. cosx ≥3x2+3cos2 x ≥0 với mọi x.

Vậy với mọi x ta luôn có: y' ≥0

Chọn C.

Ví dụ 9. Cho hàm số y= cos( 2π/3+2x) . Khi đó phương trình y'=0 có nghiệm là:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Chọn B.

Ví dụ 10.Cho hàm số y= cot2 π/4. Khi đó nghiệm của phương trình y'=0 là:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Ví dụ 11.Cho hàm số : y= 2cos3x- 3sin2x. Giải phương trình y'= 0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Hướng dẫn giải

Ta có đạo hàm : y'= -6 sin⁡3x-6cos2x

Để y'= 0 thì – 6 sin 3x - 6 cos2x= 0

⇔sin3x+ cos2x= 0 ⇔ sin3x= - cos2x

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

C. Bài tập vận dụng

Quảng cáo

Câu 1: Cho f(x)= sin( π/2-3x). Giải phương trình f' ( x)=0?

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Câu 2: Cho hàm số y=tan⁡( 2x+ 2π/3). Giải bất phương trình y’> 0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Câu 3: Cho hàm số: y=2sinx - 2cosx + 10. Tìm nghiệm của phương trình y'=0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Câu 4: Cho hàm số: y= 2tan3x + 3cot 2x+ 90. Giải phương trình y'=0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Câu 5: Cho hàm số: y=(- 1)/2 cos⁡( 4x- π/6). Giải phương trình y'=1

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Đạo hàm của hàm số đã cho :

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Quảng cáo

Câu 6: Cho hàm số y= 2x+ 1+ cos2x. Giải phương trình y'= 2

A. x=π/3+kπ        B. x=π/6+kπ        C. x=kπ/2        D. x=kπ

Lời giải:

Đạo hàm của hàm số là : y'=2-2sin2x

Để y^'=2 khi và chỉ khi: 2- 2sin 2x = 2

⇔ sin2x= 0 ⇔2x= kπ ⇔ x= kπ/2

Chọn C.

Câu 7: Cho hàm số y= x3 +3x + sin3x. Tập nghiệm của bất phương trình y^' ≤0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Hàm số đã cho xác định với mọi x.

Ta có đạo hàm: y'=3x2+3+3cos3x

Với mọi x ta luôn có: cos3x ≥ -1 nên 3cos3x ≥ -3

⇒ 3+ 3cos3x ≥0 ( 1)

Mà 3x2 ≥0 với mọi x. ( 2)

Từ ( 1) và ( 2) suy ra; y'=3x2+3+3cos3x ≥0

⇒Để y'≤0 khi và chỉ khi 3x2+3+3cos3x=0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Vậy nghiệm của bất phương trình y'≤0 là x= 0

Chọn B. .

Câu 8: Cho hàm số y= x + √x+ sin2 x. Giải bất phương trình y'≥0

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Điều kiện: x ≥0

Taị các điểm x > 0 hàm số đã cho có đạo hàm:

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Câu 9: Cho hàm số: y= cos ( 2x- π/3) . sin (2x- π/4) . Giải phương trình y’= 2

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Lời giải:

Đạo hàm của hàm số đã cho là ;

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

Câu 10: Cho hàm số y= tan( x3 + 3x2+ 3x+ 9). Giải phương trình y'=0?

A. x= 0        B. x = 2        C. x= -1        D. Đáp án khác

Lời giải:

+ Điều kiện cos⁡( x3+3x2+3x+9)≠0

+ Tại các điểm x thỏa mãn điều kiện xác định; hàm số có đạo hàm :

Ứng dụng đạo hàm giải phương trình, bất phương trình lượng giác cực hay

+ Với x= -1 ta có: cos⁡( x3+3x2+3x+9)=cos⁡8≠0 ( thỏa mãn điều kiện xác định)

Vậy nghiệm của phương trình y’= 0 là x= - 1

Chọn C.

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên