Viết phương trình tiếp tuyến khi biết hệ số góc



Bài viết Viết phương trình tiếp tuyến khi biết hệ số góc với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình tiếp tuyến khi biết hệ số góc.

Viết phương trình tiếp tuyến khi biết hệ số góc

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

A. Phương pháp giải & Ví dụ

Quảng cáo

- Gọi (Δ) là tiếp tuyến cần tìm có hệ số góc k.

- Giả sử M(xo ; yo) là tiếp điểm. Khi đó xo thỏa mãn: f ’(xo) = k (*)

- Giải (*) tìm xo. Suy ra yo = f(xo)

- Phương trình tiếp tuyến cần tìm là: y = k( x - xo) + yo

Chú ý: Đối với bài toán này ta cần lưu ý một số vấn đề sau:

   + Số tiếp tuyến của đồ thị chính là số nghiệm của phương trình : f’(x) = k

   + Cho hai đường thẳng d1 : y = k1x + b1 và d2 : y = k2x + b2. Khi đó

Các dạng bài tập Toán 11 (có lời giải)

Nếu đường thẳng d cắt các trục Ox, Oy lần lượt tại A, B thì tan(∠OAB) = ± OA/OB, trong đó hệ số góc của d được xác định bởi y’(x) = tan(∠OAB)

Ví dụ minh họa

Bài 1: Tìm tiếp tuyến của đồ thị hàm số Các dạng bài tập Toán 11 (có lời giải) có hệ số góc k = -9 ?

Hướng dẫn:

Tập xác định: D = R

Đạo hàm: y’ = x2 + 6x

Ta có:

k = -9 ⇔ y’(xo) = - 9

⇔ xo2 + 6xo = -9

⇔ (xo + 3)2 = 0

⇔ xo = -3 ⇒ yo = 16

Phương trình tiếp tuyến cần tìm là (d): y = -9(x + 3) + 16 = -9x – 11

Quảng cáo

Bài 2: 1. Viết phương trình tiếp tuyến của đồ thị (C): y = - x4 – x2 + 6, biết tiếp tuyến vuông góc với đường thẳng Các dạng bài tập Toán 11 (có lời giải)

2. Cho hàm số Các dạng bài tập Toán 11 (có lời giải)có đồ thị là (C). Tìm trên đồ thị (C) điểm mà tại đó tiếp tuyến của đồ thị vuông góc với đường thẳng Các dạng bài tập Toán 11 (có lời giải)

Hướng dẫn:

1. Hàm số đã cho xác định D = R

Gọi (t) là tiếp tuyến của đồ thị (C) của hàm số và (t) vuông góc với đường thẳng y = (1/6)x - 1, nên đường thẳng (t) có hệ số góc bằng -6

Cách 1: Gọi M(xo ; yo) là tọa độ tiếp điểm của tiếp tuyến (t) và đồ thị (C) của hàm số . Khi đó, ta có phương trình:

y’(xo) = -6 ⇔ -4xo3 - 2xo = -6 ⇔ (xo-1)(2xo2+2xo+3) = 0   (*).

Vì 2xo2 + 2xo + 3 > 0 ∀xo ∈ R nên phương trình

(*) ⇔ xo = 1 ⇒ yo = 4 ⇒ M(1;4)

Phương trình tiếp tuyến cần tìm là: y = -6(x – 1) + 4 = -6x + 10

Cách 2: Phương trình (t) có dạng y = -6x + m

(t) tiếp xúc (C) tại điểm M(xo ; yo) khi hệ phương trình sau có nghiệm xo

Các dạng bài tập Toán 11 (có lời giải) có nghiệm xoCác dạng bài tập Toán 11 (có lời giải)

2. Hàm số đã cho xác định D = R

Ta có: y’ = x2 – 1

Gọi M(xo ; yo) ∈(C) ⇔ Các dạng bài tập Toán 11 (có lời giải)

Tiếp tuyến Δ tại điểm M có hệ số góc: y’(xo) = xo2 - 1

Đường thẳng d: y = (-1/3)x + 2/3 có hệ số góc k = (-1/3)

Các dạng bài tập Toán 11 (có lời giải)

Vậy có 2 điểm M(-2; 0) hoặc M = (2; 4/3) là tọa độ cần tìm.

Bài 3: Cho hàm số Các dạng bài tập Toán 11 (có lời giải)Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng y = (1/3)x + 2.

Hướng dẫn:

TXĐ: D = R\{1}

Ta có Các dạng bài tập Toán 11 (có lời giải)

Gọi M(xo; yo) là tiếp điểm. Vì tiếp tuyến vuông góc với đường thẳng y = (1/3)x + 2 nên ta có

Các dạng bài tập Toán 11 (có lời giải)

   + Với M(0; -1) thì phương trình tiếp tuyến là: y = -3x – 1

   + Với M(2; 5) thì phương trình tiếp tuyến là: y = -3(x – 2) + 5 = -3x + 11

Bài 4: Trong các tiếp tuyến tại các điểm trên đồ thị hàm số y = x3 – 3x2 + 2, tiếp tuyến có hệ số góc nhỏ nhất bằng bao nhiêu?

Quảng cáo

Hướng dẫn:

Tập xác định: D = R

Đạo hàm: y’ = 3x2 – 6x = 3(x-1)2 - 3 ≥ -3

Vậy trong các tiếp tuyến tại các điểm trên đồ thị hàm số đã cho, tiếp tuyến có hệ số góc nhỏ nhất bằng -3

Bài 5: Cho hàm số Các dạng bài tập Toán 11 (có lời giải) có đồ thị (H). Viết phương trình đường thẳng Δ vuông góc với đường thẳng d: y = - x + 2 và tiếp xúc với (H).

Hướng dẫn:

Tập xác định: D = R\{0}

Đạo hàm: y’ = 4/(x2)

Đường thẳng Δ vuông góc với đường thẳng d: y = -x + 2 nên Δ có hệ số góc bằng 1. Ta có phương trình:

Các dạng bài tập Toán 11 (có lời giải)

Tại M(2; 0). Phương trình tiếp tuyến là y = 1.(x – 2) = x – 2

Tại N(-2; 4). Phương trình tiếp tuyến là y = x + 2 + 4 = x + 6

Bài 6: Lập phương trình tiếp tuyến của đường cong (C): y = x3 + 3x2 – 8x + 1, biết tiếp tuyến đó song song với đường thẳng Δ: y = x + 2017?

Hướng dẫn:

Tập xác định: D = R

Đạo hàm: y’ = 3x2 + 6x – 8

Tiếp tuyến cần tìm song song với đường thẳng Δ: y = x + 2017 nên hệ số góc của tiếp tuyến là 1

Ta có phương trình

Các dạng bài tập Toán 11 (có lời giải)

Tại M(1; -3). Phương trình tiếp tuyến là y = x – 1 – 3 = x – 4

Tại N(-3; 25). Phương trình tiếp tuyến là y = x + 3 + 25 = x + 28

Bài 7: Cho hàm số y = -x3 + 3x2 – 3 có đồ thị (C). Số tiếp tuyến của (C) vuông góc với đường thẳng y = (1/9)x + 2017 là bao nhiêu?

Hướng dẫn:

Tiếp tuyến của (C) vuông góc với đường thẳng y = (1/9)x + 2017 có dạng Δ: y = -9x + c

Δ là tiếp tuyến của (C) ⇔ hệ phương trình

Các dạng bài tập Toán 11 (có lời giải) có nghiệm

Các dạng bài tập Toán 11 (có lời giải)

Vậy có hai giá trị c thỏa mãn.

B. Bài tập vận dụng

Bài 1: Hệ số góc của tiếp tuyến của đồ thị hàm số Các dạng bài tập Toán 11 (có lời giải) tại giao điểm của đồ thị hàm số với trục hoành bằng :

A. 9            B. 1/9            C. -9            D. -1/9

Lời giải:

Đáp án: A

Chọn A

Tập xác định: D = R\{1}

Đạo hàm: y' = 1/(x-1)2

Đồ thị hàm số cắt trục hoành tại A(2/3; 0)

Hệ số góc của tiếp tuyến là y’ (2/3) = 9

Quảng cáo

Bài 2: Hệ số góc của tiếp tuyến của đồ thị hàm số Các dạng bài tập Toán 11 (có lời giải) tại giao điểm với trục tung bằng:

A. -2            B. 2            C. 1            D. -1

Lời giải:

Đáp án: B

Chọn B

Tập xác định: D = R\{-1}

Đạo hàm: y’ = 2/(x+1)2

Đồ thị hàm số cắt trục tung tại điểm có xo = 0 ⇒ y’(0) = 2

Bài 3: Cho hàm số y = x3 – 3x2 có đồ thị (C) có bao nhiêu tiếp tuyến của (C) song song đường thẳng y = 9x + 10

A. 1            B. 3            C. 2            D. 4

Lời giải:

Đáp án: C

Chọn C

Tập xác định: D = R

Đạo hàm: y’ = 3x2 – 6x.     k = 9 ⇒ 3xo2 - 6xo = 9 Các dạng bài tập Toán 11 (có lời giải)

Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán

Bài 4: Gọi (C) là đồ thị của hàm số y = x4 + x. Tiếp tuyến của (C) vuông góc với đường thẳng d: x + 5y = 0 có phương trình là:

A. y = 5x – 3

B. y = 3x – 5

C. y = 2x – 3

D. y = x + 4

Lời giải:

Đáp án: A

Chọn A

Ta có : y’ = 4x3 + 1

Vì tiếp tuyến vuông góc với đường thẳng y = (-1/5)x nên tiếp tuyến có hệ số góc là 5

Khi đó ta có :

4x3 + 1 = 5 ⇔ x = 1 ⇒ y = 2

Phương trình tiếp tuyến của đồ thị hàm số tại M(1 ; 2) có dạng

y = 5(x – 1) + 2 = 5x – 3

Bài 5: Gọi (C) là đồ thị hàm số Các dạng bài tập Toán 11 (có lời giải). Tìm tọa độ các điểm trên (C) mà tiếp tuyến tại đó với (C) vuông góc với đường thẳng có phương trình y = x + 4

A. (1 + √3; 5+3√3), (1-√3; 5-3√3)

B. (2; 12)

C. (0; 0)

D. (-2; 0)

Lời giải:

Đáp án: A

Chọn A

Tập xác định: D = R\{1}

Đạo hàm: Các dạng bài tập Toán 11 (có lời giải)

Giả sử a là hoành độ điểm thỏa mãn yêu cầu bài toán ⇒ y’(a) = -1

Các dạng bài tập Toán 11 (có lời giải)

Bài 6: Biết tiếp tuyến (d) của hàm số y = x3 – 2x + 2 vuông góc với đường phân giác góc phần tư thứ nhất. Phương trình (d) là:

Các dạng bài tập Toán 11 (có lời giải)

Lời giải:

Đáp án: C

Chọn C.

Tập xác định: D = R

y’ = 3x2 – 2

Đường phân giác góc phần tư thứ nhất có phương trình Δ: x = y

⇒(d) có hệ số góc là – 1

3x2 – 2 = -1 ⇔ x = ± 1/√3

Phương trình tiếp tuyến cần tìm là

Các dạng bài tập Toán 11 (có lời giải)

Các dạng bài tập Toán 11 (có lời giải)

Bài 7: Tìm hệ số góc của tiếp tuyến với đồ thị y = tanx tại điểm có hoành độ x = π/4.

A. k = 1            B. k = 0,5            C. k = √2/2            D. 2

Lời giải:

Đáp án: D

Chọn D

Các dạng bài tập Toán 11 (có lời giải)

Hệ số góc của tiếp tuyến với đồ thị y = tanx tại điểm có hoành độ x = π/4 là k = y’( π/4) = 2

Bài 8: Hệ số góc của tiếp tuyến của đường cong Các dạng bài tập Toán 11 (có lời giải) tại điểm có hoành độ xo = π là:

A.-√3/12            B. √3/12             C. -1/12            D. 1/12

Lời giải:

Đáp án: C

Chọn C

Các dạng bài tập Toán 11 (có lời giải)

Bài 9: Cho hàm số y = x3 – 6x2 + 7x + 5 (C). Tìm trên (C) những điểm có hệ số góc tiếp tuyến tại điểm đó bằng -2?

A. (-1; -9); (3; -1)

B. (1; 7); (3; -1)

C. (1; 7); (-3; -97)

D. (1; 7); (-1; -9)

Lời giải:

Đáp án: B

Chọn B

Gọi M(xo ; yo) là tọa độ tiếp điểm. Ta có y’ = 3x2 – 12x + 7

Hệ số góc của tiếp tuyến bằng -2

⇒ y’(xo) = -2 ⇔ 3xo2 - 12xo + 7 = -2 ⇔ Các dạng bài tập Toán 11 (có lời giải)

Bài 10: Cho hàm số Các dạng bài tập Toán 11 (có lời giải) tiếp tuyến của đồ thị hàm số vuông góc với đường thẳng d: 3y – x + 6 = 0 là

A. y = -3x – 3; y = -3x – 11

B. y = -3x – 3; y = -3x + 11

C. y = -3x + 3; y = -3x – 11

D. y = -3x – 3; y = 3x – 11

Lời giải:

Đáp án: A

Chọn A

d: 3y – x + 6 = 0 ⇔ y = (1/3)x - 2

Gọi M(xo; yo) là tọa độ tiếp điểm. Ta có Các dạng bài tập Toán 11 (có lời giải)

Tiếp tuyến vuông góc với d nên hệ số góc của tiếp tuyến là -3 nên y’(xo) = -3

Các dạng bài tập Toán 11 (có lời giải)

Với xo = -3/2 ⇒ yo = 3/2 ⇒ phương trình tiếp tuyến: y = -3(x + 3/2) + 3/2 = -3x-3

Với xo = -5/2 ⇒ yo = (-7)/2 ⇒ phương trình tiếp tuyến: y = -3(x + 5/2)-7/2 = -3x-11

Bài 11: Tìm m để tiếp tuyến của đồ thị hàm số y = (2m – 1)x4 – m + 5/4 tại điểm có hoành độ x = - 1 vuông góc với đường thẳng d : y = 2x – y – 3 = 0

A. 3/4            B. 1/4            C. 7/16            D. 9/16

Lời giải:

Đáp án: D

Chọn D

d : y = 2x – y – 3 = 0 ⇔ y = 2x – 3, hệ số góc của đường thẳng d là 2

y’ = 4(2m – 1)x3

Hệ số góc của tiếp tuyến với đồ thị hàm số y = (2m – 1)x4 – m + 5/4 tại điểm có hoành độ x = -1 là y’(-1) = -4(2m – 1)

Ta có 2. -4(2m – 1) = -1 ⇔ m = 9/16

Bài 12: Cho hàm số Các dạng bài tập Toán 11 (có lời giải) có đồ thị cắt trục tung tại A(0 ; -1), tiếp tuyến tại A có hệ số góc k = -3. Các giá trị của a, b là

A. a = 1, b = 1

B. a = 2, b = 1

C. a = 1, b = 2

D. a = 2, b = 2

Lời giải:

Đáp án: B

Chọn B

A(0; - 1) ∈(C) nên ta có: -1 = b/(-1) ⇔ b = 1

Ta có Các dạng bài tập Toán 11 (có lời giải)Hệ số góc của tiếp tuyến với đồ thị tại điểm A là:

k = y’(0) = -a – b = -3 ⇔ a = 3 – b = 2.

Bài 13: Điểm M trên đồ thị hàm số y = x3 - 3x2 - 1 mà tiếp tuyến tại đó có hệ số góc k bé nhất trong tất cả các tiếp tuyến của đồ thị thì M, k là

A. M(1; -3), k = -3

B. M(1; 3), k = -3

C. M(1; -3), k = 3

D. M(-1; -3), k = -3

Lời giải:

Đáp án: A

Chọn A.

Gọi M(xo ; yo). Ta có y’ = 3x2 – 6x

Hệ số góc của tiếp tuyến với đồ thị tại M là :

k = y’(xo) = 3xo2 - 6xo = 3(xo - 1)2 - 3 ≥ -3

Vậy k bé nhất bằng -3 khi xo = 1, yo = -3

Bài 14: Cho hàm số y = x3 + 3x2 - 6x + 1 (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng y = (-1/18)x + 1

A. y = 18x + 8 và y = 18x -27

B. y = 18x + 8 và y = 18x - 2

C. y = 18x + 81 và y = 18x - 2

D. y = 18x + 81 và y = 18x - 27

Lời giải:

Đáp án: D

Chọn D.

Gọi M(xo; yo) là tiếp điểm

Ta có: y’ = 3x2 + 6x – 6

Vì tiếp tuyến vuông góc với đường thẳng y = (-1/18)x + 1 nên ta có:

y'(xo) = 18 ⇔ 3xo2 + 6xo - 6 = 18 ⇔

Từ đó ta tìm được hai tiếp tuyến: y = 18x + 81 và y = 18x – 27

Bài 15: Cho hàm số y = x3 - 3x + 1 (C). Viết phương trình tiếp tuyến của đồ thị (C), biết hệ số góc của tiếp tuyến bằng 9

A. y = 9x - 1 hay y = 9x + 17

B. y = 9x - 1 hay y = 9x + 1

C. y = 9x - 13 hay y = 9x + 1

D. y = 9x - 15 hay y = 9x + 17

Lời giải:

Đáp án: D

Chọn D

Ta có: y’ = 3x2 – 3. Gọi M(xo ; yo) là tiếp điểm

Ta có: y’(xo) = 9 ⇔ 3xo2 - 3 = 9 ⇔ xo = ±2

xo = 2 ⇒ yo = 3. Phương trình tiếp tuyến: y = 9(x – 2) + 3 = 9x – 15

xo = -2 ⇒ yo = -1. Phương trình tiếp tuyến: y = 9(x + 2) – 1 = 9x + 17

C. Bài tập tự luyện

Bài 1. Cho hàm số (C):y = x3 - 3x + 2. Viết phương trình tiếp tuyến của đồ thị (C), ta biết tiếp tuyến đó có hệ số góc bằng 9.

Bài 2. Viết phương trình tiếp tuyến của đường cong y = x3:

a) Tại điểm (-1; -1).

b) Biết hệ số góc của tiếp tuyến bằng 3.

Bài 3. Cho hàm số y = 13x2+x+2 có đồ thị (C). Viết phương trình tiếp tuyến biết phương trình tiếp tuyến có hệ số góc bằng 1.

Bài 4. Viết phương trình tiếp tuyến của đồ thị hàm số y = –x4 – x2 + 6, biết tiếp tuyến có hệ số góc k = 6

A. y = 6x + 6.

B. y = –6x + 1.

C. y = –6x + 10.

D. y = 6x + 10.

Bài 5. Viết phương trình tiếp tuyến của đồ thị hàm số y = x2 – 2x + 3 biết hệ số góc của tiếp tuyến bằng – 4.

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


dao-ham.jsp


Giải bài tập lớp 11 sách mới các môn học