Phương pháp tính đạo hàm bằng định nghĩa (hay, chi tiết)
Bài viết Phương pháp tính đạo hàm bằng định nghĩa với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp tính đạo hàm bằng định nghĩa.
Phương pháp tính đạo hàm bằng định nghĩa (hay, chi tiết)
A. Phương pháp giải & Ví dụ
1. Định nghĩa đạo hàm tại một điểm
Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn)
thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x0 và kí hiệu là f’(x0) (hoặc y’(x0)), tức là
Chú ý:
Đại lượng Δx = x – x0 gọi là số gia của đối số x tại x0.
Đại lượng Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy
2. Cách tính đạo hàm bằng định nghĩa
Bước 1. Giả sử Δx là số gia của đối số x tại x0, tính Δy = f(x0 + Δx) – f(x0).
Chú ý: Trong định nghĩa trên đây, thay xo bởi x ta sẽ có định nghĩa và quy tắc tính đạo hàm của hàm số y = f(x) tại điểm x ∈ (a, b)
Ví dụ minh họa
Bài 1: Cho hàm số có Δx là số gia của đối số tại x = 2. Khi đó bằng bao nhiêu?
Hướng dẫn:
Tập xác định của hàm số đã cho là D = [2/3; +∞)
Với Δx là số gia của đối số tại x = 2 sao cho 2 + Δx ∈ D, thì
Bài 2: Cho hàm số f(x) = 3x + 5.Tính đạo hàm của hàm số đã cho bằng định nghĩa.
Hướng dẫn:
Tập xác định của hàm số đã cho là D = R
Ta có Δy = 3(x+Δx) + 5 - 3x - 5 = 3Δx
Khi đó:
Bài 3: Cho hàm số
Đạo hàm của hàm số đã cho tại x = 1?
Hướng dẫn:
với Δx là số gia của đối số tại x = 1, ta có
Bài 4: Tính đạo hàm của các hàm số sau tại các điểm đã cho: f(x)= 2x3 + 1 tại x = 2
Hướng dẫn:
Ta có
Bài 5: Tính đạo hàm của các hàm số sau tại các điểm đã cho:
Hướng dẫn:
Ta có
Bài 6: Tính đạo hàm của hàm số:
Hướng dẫn:
Ta có f(0) = 0, do đó:
Bài 7: Tính đạo hàm của hàm số bằng định nghĩa
Hướng dẫn:
Tập xác định của hàm số đã cho là D = R\{-1}
Ta có
B. Bài tập vận dụng
Bài 1: Cho hàm số f(x) = x2 + 2x, có Δx là số gia của đối số tại x = 1, Δy là số gia tương ứng của hàm số. Khi đó Δy bằng:
A. (Δx)2 + 2Δx
B. (Δx)2 + 4Δx
C. (Δx)2 + 2Δx - 3
D. 3
Lời giải:
Đáp án: B
Δy = f(1 + Δx) - f(1) = (1 + Δx)2 + 2(1 + Δx) - (1 + 2) = (Δx)2 + 4Δx
Đáp án B
Bài 2: Cho hàm số
Đạo hàm của hàm số đã cho tại x = 1 là:
A. 1/4 B. -1/2 C. 0 D. 1/2
Lời giải:
Đáp án: A
với Δx là số gia của đối số tại x = 1, ta có
Đáp án A
Bài 3: Cho hàm số f(x) = |x + 1|. Khẳng định nào sau đây là sai?
A. f(x) liên tục tại x = -1
B. f(x) có đạo hàm tại x = -1
C. f(-1) = 0
D. f(x) đạt giá trị nhỏ nhất tại x = -1
Lời giải:
Đáp án: B
Suy ra không tồn tại giới hạn của tỉ số khi x → -1
Do đó hàm số đã cho không có đạo hàm tại x = -1
Vậy chọn đáp án là B
Bài 4: Số gia của hàm số f(x) = 2x2 - 1 tại x0 = 1 ứng với số gia Δx = 0,1 bằng:
A. 1
B. 1,42
C. 2,02
D. 0,42
Lời giải:
Đáp án: B
chọn đáp án là B
Bài 5: Cho hàm số y = √x, Δx là số gia của đối số tại x. Khi đó Δy/Δx bằng:
Lời giải:
Đáp án: C
Δy = f(x0 + Δx) - f(x0)
Vậy chọn đáp án là C
Bài 6: Cho hàm số
Đạo hàm của hàm số đã cho tại x = 1?
A. 1 B. 0 C. 1/4 D. -1/4
Lời giải:
Đáp án: C
Ta có
Vậy chọn đáp án là C
Bài 7: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = 2x3 + 1 tại x = 2?
A. 10
B. 24
C. 22
D. 42
Lời giải:
Đáp án: B
Ta có
Vậy chọn đáp án là B
Bài 8: Đạo hàm của các hàm số sau tại các điểm đã cho:
A. 1/2 B. -1/√2 C. 0 D. 3
Lời giải:
Đáp án: A
Ta có f(0) = 0, do đó:
Vậy chọn đáp án là A
Bài 9: Hàm số có Δx là số gia của đối số tại x = 2. Khi đó Δy/Δx bằng?
Lời giải:
Đáp án: A
Vậy chọn đáp án là A
Bài 10: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = x2 + 1 tại x = 1?
A. 1/2 B. 1 C. 0 D. 2
Lời giải:
Đáp án: D
Vậy chọn đáp án là D
C. Bài tập tự luyện
Bài 1. Cho hàm số f(x) = 2x2 + x + 1. Hãy tính f'(2) theo phương pháp tính đạo hàm bằng định nghĩa.
Bài 2. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:
a) y = x2 + x tại x0 = 5.
b) y = tại x0 = -3.
Bài 3. Cho hàm số: y = . Tính đạo hàm của hàm số tại x0 = 1.
Bài 4. Cho hàm số: f(x) = . Khi đó f’(0) là kết quả nào?
Bài 5. Tìm a; b để hàm số y = f(x) = có đạo hàm tại x = 1.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 2: Tính đạo hàm bằng công thức
- Dạng 3: Tính đạo hàm của hàm số lượng giác
- 60 bài tập trắc nghiệm Đạo hàm có đáp án (phần 1)
- 60 bài tập trắc nghiệm Đạo hàm có đáp án (phần 2)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều