Đạo hàm cấp cao của hàm số - Toán lớp 11

Đạo hàm cấp cao của hàm số

A. Phương pháp giải

+ Đạo hàm cấp hai: Cho hàm số y= f(x) có đạo hàm tại trên khoảng (a ;b). Nếu hàm số y’= f’(x) cũng có đạo hàm thì đạo hàm của nó được gọi là đạo hàm cấp hai của hàm số y= f(x) và được kí hiệu là y'' hay f'' (x), tức là: f''=(f')' .

+Đạo hàm cấp n: Cho hàm số y= f(x) có đạo hàm cấp n-1 (với n thuộc số tự nhiên ,n ≥ 2) là f(n-1)(x). Nếu f(n-1) cũng có đạo hàm thì đạo hàm của nó được gọi là đạo hàm cấp n của hàm số

y= f(x) và được kí hiệu là f(n), tức là: f((n) ) (x)=(f((n-1) ) (x))'

B. Ví dụ minh họa

Ví dụ 1. Tính đạo hàm cấp hai của hàm số sau y= x10 + 9x2 + 8x+ 10

A. 90x8 +1 8        B. 10x9 + 18x        C. 9x8+ 18        D. Tất cả sai

Hướng dẫn giải

+ Đạo hàm cấp một của hàm số là:

y'= 10x9+ 18x + 8

⇒ Đạo hàm cấp hai của hàm số là:

y''=(10x9+18x+8)' = 90x8+ 18

Chọn A.

Ví dụ 2. Tính đạo hàm cấp hai của hàm số: y= x8+ x4+x+ √x

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hướng dẫn giải

Hàm số có đạo hàm nếu x< 0.

+ Đạo hàm cấp một của hàm số là:

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Ví dụ 3. Tính đạo hàm cấp ba của hàm số y= sin (3x – 1)

A. – 27cos( 3x- 1)        B. 27.cos(3x- 1)

C. 9.sin( 3x- 1)        D.Đáp án khác

Hướng dẫn giải

Đạo hàm cấp một của hàm số đã cho là: y'=3 cos⁡(3x-1)

Đạo hàm cấp hai của hàm số là; y''=[ 3.cos⁡( 3x-1) ]'= -9 sin⁡( 3x-1)

Đạo hàm cấp ba của hàm số là y'''=[ -9 sin⁡(3x-1) ]'= -27 cos⁡(3x-1)

Chọn A.

Ví dụ 4. Tính đạo hàm cấp hai của hàm số y= cos ( 2x+ x2)

A. - [ cos( 2x+ x2 )( 2+ 2x)2 + 2sin ( 2x+ x2 )]

B. cos( 2x+ x2 )( 2+ 2x)2 + 2sin ( 2x+ x2 )

C. - [ cos( 2x+ x2 )( 2+ 2x)2 - 2sin ( 2x+ x2 )]

D. - [ cos( 2x+ x2 )( 2+ 2x)2 + sin ( 2x+ x2 )]

Hướng dẫn giải

Đạo hàm cấp một của hàm số là:

y'= -sin⁡(2x+ x2 ).( 2x+ x2 )'= -sin⁡( 2x+ x2 ).( 2+2x)

Đạo hàm cấp hai của hàm số là:

y''=[- sin⁡( 2x+ x2 ).( 2+2x)]'

=-{[sin⁡( 2x+ x2 ) ]'.( 2+2x)+sin⁡( 2x+ x2 ).(2+2x)'}

= -{ cos(2x+ x2).(2x+ x2) '( 2+ 2x)+ sin (2x+ x2).2 }

= - [ cos( 2x+ x2 )( 2+ 2x)2 + 2sin ( 2x+ x2 )]

Chọn A.

Ví dụ 5. Tính đạo hàm cấp hai của hàm số y= (x-1)/(3x-6)?

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hướng dẫn giải

Hàm số có đạo hàm tại các điểm x≠2. Khi đó; đạo hàm cấp một của hàm số là

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Ví dụ 6 : Tính đạo hàm cấp ba của hàm số y= ( 2x+ x2)( x2 – 1)

A. 12+ 24x        B. 12x2 + 12x- 2        C. 12x+ 24        D. 6x+ 12

Hướng dẫn giải

Ta có: y=( 2x+ x2) ( x2 -1)= 2x3

-2x + x4 – x2

+ Đạo hàm cấp một của hàm số là: y'=6x2-2+4x3-2x

+ Đạo hàm cấp hai của hàm số là: y''=(6x2-2+4x3-2x)'=12x+12x2-2

+ Đạo hàm cấp ba của hàm số là: y'''=( 12x+12x2-2)'=12+24x

Chọn A.

Ví dụ 7: Tính đạo hàm cấp hai của hàm số: y= √(x2-1)

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hướng dẫn giải

Hàm số có đạo hàm khi x > 1 hoặc x < -1( khi đó x2 -1> 0)

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Ví dụ 8 : Tính đạo hàm cấp hai của hàm số: y= sin( 2x- 1) – cos (2x- 4)

A. y’’= - 4sin( 2x- 1)+ 4 cos( 2x-4)        B. y’’= - 4sin( 2x- 1)- 4 cos( 2x-4)

C. y’’= 4sin( 2x- 1)- 4 cos( 2x-4)        D.y’’= 4sin( 2x- 1)+ 4 cos( 2x-4)

Hướng dẫn giải

Đạo hàm cấp một của hàm số là; y'=2 cos⁡( 2x-1)+2sin⁡( 2x-4)

Đạo hàm cấp hai của hàm số là:

y''=[2 cos⁡( 2x-1)+2 sin⁡( 2x-4)]' = - 4sin( 2x- 1)+ 4 cos( 2x-4)

Chọn A.

Ví dụ 9: Tính đạo hàm cấp hai của hàm số: y= ( x2+1)3 .

A. 3 .( x2+1) 2+6x2 (x2+1)        B. 3 .( x2+1) 2+12x2 (x2+1)

C. 6 .( x2+1) 2-12x2 (x2+1)        D. 6 .( x2+1) 2+24x2 (x2+1)

Hướng dẫn giải

Đạo hàm cấp một của hàm số là: y'=3(x2+1) 2.(x2+1)^'=6x.( x2+1) 2

Đạo hàm cấp hai của hàm số là:

y''=6 .( x2+1) 2+6x.[( x2+1) 2]'

= 6 .( x2+1) 2+6x.2(x2+1).( x2+1)'

= 6 .( x2+1) 2+24x2 (x2+1)

Chọn D.

Ví dụ 10 : Tính đạo hàm cấp hai của hàm số y= √(x3+ 2x2 )

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hướng dẫn giải

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Ví dụ 11. Tính đạo hàm cấp ba của hàm số y= tan2x

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hướng dẫn giải

Đạo hàm cấp một của hàm số là: y'=2( 1+tan2 2x )

Đạ hàm cấp hai của hàm số là:

y''=2.( 1+tan2 2x )’= 2.2. tan2x. ( tan2x)’

=4tan2 x( 1+ tan22x) . ( 2x)’= 8tan2x( 1+ tan22x) = 8.tan2x+ 8tan32x

Đạo hàm cấp ba của hàm số là:

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Ví dụ 12: Tính đạo hàm cấp bốn của hàm số y= 1/x

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hướng dẫn giải

Hàm số có đạo hàm tại điểm x≠0

Đạo hàm cấp một của hàm số là: y'= (- 1)/x2

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Ví dụ 13: Tính đạo hàm cấp hai của hàm số y= 1/(x2-5x+6)

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hướng dẫn giải

Hàm số có đạo hàm tại các điểm x≠2;x≠3

 Đạo hàm cấp cao của hàm số | Toán lớp 11

C. Bài tập vận dụng

Câu 1: Tính đạo hàm cấp ba của hàm số sau y= x9 – x4 + 8x2+ 3

A. 504x6 - 24x        B. 72x6 - 24x+ 3        C. 72x7 - 24x+ 3        D. Tất cả sai

+ Đạo hàm cấp một của hàm số là:

y'= 9x8 -4x3 + 16x

+ Đạo hàm cấp hai của hàm số là:

y''=(9x8-4x3+16x)' = 72x7 – 12x2 + 16

+ Đạo hàm cấp ba của hàm số là :

y'''=504x6-24x

Chon A.

Câu 2: Tính đạo hàm cấp hai của hàm số: y= x7-2x2+9x+ 2√x

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hàm số có đạo hàm nếu x > 0.

+ Đạo hàm cấp một của hàm số là

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Câu 3: Tính đạo hàm cấp ba của hàm số y=2 cos ( 10- 2x)

A. –16 sin( 10- 2x)        B. – 16 cos( 10- 2x)

C. - 8.sin( 10- 2x)        D.Đáp án khác

Đạo hàm cấp một của hàm số đã cho là: y^'=4sin⁡( 10-2x)

Đạo hàm cấp hai của hàm số là; y''=[ 4.sin⁡( 10-2x)]'= -8 cos⁡( 10-2x)

Đạo hàm cấp ba của hàm số là y''^'=[-8 cos⁡( 10-2x) ]'= -16 sin⁡( 10-2x)

Chọn A.

Câu 4: Tính đạo hàm cấp hai của hàm số y= sin ( x2- 9)

A. 4x2. sin( x2 – 9) - 2.cos( x2 – 9)

B. - 2x2. sin( x2 – 9)+ 2.cos( x2 – 9)

C. - 4x2. sin( x2 – 9)+ 2.cos( x2 – 9)

D. Đáp án khác

Đạo hàm cấp một của hàm số là:

y'=cos⁡( x2-9).( x2-9)'=cos⁡( x2-9).2x

Đạo hàm cấp hai của hàm số là:

y''=[cos⁡( x2-9) ]'.2x+cos⁡( x2-9).( 2x)'

⇔y''=-2x.sin⁡( x2-9).2x+2 cos⁡( x2-9) = - 4x2. sin( x2 – 9)+ 2.cos( x2– 9)

Chọn C.

Câu 5: Tính đạo hàm cấp hai của hàm số y= (x+3)/(x-6)?

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hàm số có đạo hàm tại các điểm x≠6. Khi đó; đạo hàm cấp một của hàm số là :

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Câu 6: Tính đạo hàm cấp ba của hàm số y= (x3 – 1) (x+1)

A. 12+ 24x        B. 24x+ 6        C. 12x+ 24        D. 24x+ 12

Ta có: y = ( x3 – 1)( x+1)= x4 + x3 – x- 1

+ Đạo hàm cấp một của hàm số là: y'=4x3+3x2-1

+ Đạo hàm cấp hai của hàm số là: y''=(4x3+ 3x2-1)'=12x2+6x

+ Đạo hàm cấp ba của hàm số là: y'''=( 12x2+6x)'=24x+6

Chọn B.

Câu 7: Tính đạo hàm cấp hai của hàm số: y=x.sinx

A. cosx + x. sinx        B. 2sinx+ x. cosx

C. 2cosx- x. sinx        D. Đáp án khác

+ Đạo hàm cấp một của hàm số là:

y'=( x)'.sinx+x.( sinx)' = sinx+ x.cosx

+ Đạo hàm cấp hai của hàm số là:

y''= ( sinx+ x. cosx)'=cosx+(x)'.cosx+x.(cos⁡x )'

=cosx+cosx-x.sinx=2.cosx-x.sinx

Chọn C

Câu 8: Tính đạo hàm cấp hai của hàm số: y= 3cos( x+ 1) - 8. sin( 3x+ 10)

A. y''= -3 cos⁡( x+1)+72 sin⁡( 3x+10)

B. y''= -3 cos⁡( x+1)+36 sin⁡( 3x+10)

C.y''= -3 cos⁡( x+1) -72sin⁡( 3x+10)

D. tất cả sai

Đạo hàm cấp một của hàm số là:

y'= -3 sin⁡( x+1)-24 cos⁡( 3x+10)

Đạo hàm cấp hai của hàm số là:

y''= -3 cos⁡( x+1)+72 sin⁡( 3x+10)

Chọn A.

Câu 9: Tính đạo hàm cấp hai của hàm số: y= ( x3+2x-1)2 .

A. y''=( 3x2+2)( 6x2+4)- ( x3+2x-1).12x

B. y''=( 3x2+2)( 3x2+2)+( x3+2x-1).12x

C. y''=( 3x2+2)( 6x2+4)+( x3+2x-1).12x

D. Tất cả sai

Đạo hàm cấp một của hàm số là:

y'=2( x3+2x-1).( x3+2x-1)^'

=2.(x3+2x-1).( 3x2+2)=(x3+2x-1).( 6x2+4)

Đạo hàm cấp hai của hàm số là:

y''=( x3+2x-1)' ( 6x2+4)+( x3+2x-1).( 6x2+4)'

⇔ y''=( 3x2+2)( 6x2+4)+( x3+2x-1).12x

Chọn C.

Câu 10: Tính đạo hàm cấp hai của hàm số y= √(2x+1)+x2

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hàm số có đạo hàm tại các điểm x thỏa mãn: x > 1/2

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Câu 11: Tính đạo hàm cấp ba của hàm số y=cot( 2- 2x)

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Đạo hàm cấp một của hàm số là:

y'=-[1+cot2 ( 2- 2x)]( 2-2x)'= 2[1+ cot2 ( 2-2x)] )

Đạ hàm cấp hai của hàm số là:

y''=2 [1+cot2 (2- 2x)]’ = 2.2. cot (2- 2x). [cot⁡( 2-2x)]'

y''=4 cot⁡( 2-2x).[-1( 1+ cot2 ( 2-2x)].( 2-2x)'

⇔ y''=8 cot⁡( 2-2x) [1+ cot2 ( 2-2x)] = 8cot( 2- 2x)+ 8cot3( 2- 2x)

Đạo hàm cấp ba của hàm số là:

y'''=(8 cot⁡( 2- 2x)+8cot3 ( 2- 2x)) '

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Câu 12: Tính đạo hàm cấp ba của hàm số y= 1/(2x-2)

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hàm số có đạo hàm tại điểm x≠1

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Câu 13: Tính đạo hàm cấp hai của hàm số y = cos( x2+x+ 1)

A. y''= -cos⁡( x2+x+1).( 2x+1) 2 – 2 sin( x2 + x+ 1)

B. y''= cos⁡( x2+x+1).( 2x+1) 2 + 2 sin( x2 + x+ 1)

C. y''= -cos⁡( x2+x+1).( 2x+1) 2 - sin( x2 + x+ 1)

D. Tất cả sai

Đạo hàm cáp một của hàm số là:

y'= -sin⁡( x2+x+1).( x2+x+1)'= -sin⁡(x2+x+1).( 2x+1)

Đạo hàm cấp hai của hàm số là;

y''=[-sin⁡( x2+x+1) ]'.(2x+1)+[-sin⁡(x2+x+1) ].( 2x+1)'

⇔ y''= -cos⁡( x2+x+1).( 2x+1) 2 – 2 sin( x2 + x+ 1)

Chọn A

Câu 14: Tính đạo hàm cấp 4 của hàm số; y=(x2+x+1)/(x+1)

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Hàm số có đạo hàm tại các điểm x thỏa mãn: x≠-1

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Câu 15: Cho hàm số: y=sin⁡(3x- π/3). Tính đạo hàm cấp năm của hàm số

 Đạo hàm cấp cao của hàm số | Toán lớp 11

Đạo hàm cấp một là; y'=3.cos⁡( 3x- π/3)

Đạo hàm cấp hai của hàm số là: y''=-9.sin⁡( 3x- π/3)

Đạo hàm cấp ba của hàm số là: y'''=-27.cos⁡( 3x- π/3)

Đạo hàm cấp bốn của hàm số: y(( 4))=81 sin⁡( 3x- π/3)

Đạo hàm cấp năm của hàm số: y((5))=243.cos⁡( 3x- π/3)

Chọn C.

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 11 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số, Giải tích 11 và Hình học 11.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.