Bài tập về Tính chất chia hết cực hay, chi tiết

Bài tập về Tính chất chia hết cực hay, chi tiết

A. Phương pháp giải

Bài tập về Tính chất chia hết cực hay, chi tiết | Toán lớp 6 Phương pháp: Với mọi a, b, c ∈ Z, ta có

- Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c.

Bài tập về Tính chất chia hết cực hay, chi tiết | Toán lớp 6

- Nếu a chia hết cho b thì bội của a cũng chia hết cho b.

Bài tập về Tính chất chia hết cực hay, chi tiết | Toán lớp 6

- Nếu hai số a, b đều chia hết cho c thì tổng và hiệu của chúng đều chia hết cho c.

Bài tập về Tính chất chia hết cực hay, chi tiết | Toán lớp 6

B. Ví dụ minh họa

Ví dụ 1: Cho ba số tự nhiên a, b, c trong đó a và b là các số chia cho 5 dư 3 còn c là số chia cho 5 dư 2.

Chứng minh rằng mỗi tổng hoặc hiệu: a + c; a - b chia hết cho 5

Hướng dẫn giải:

Theo bài ra ta có: a chia cho 5 dư 3 nên a có dạng: a = 5q + 3 (q ∈ N)

Tương tự b chia cho 5 dư 3 nên b có dạng: b = 5p + 3 (p ∈ N)

c chia cho 5 dư 2 nên c có dạng: c = 5m + 2 (m ∈ N)

Xét a + c = (5q + 3) + (5m + 2)

⇔ a + c = 5(q + m) + (3 + 2)

⇔ a + c = 5(q + m) + 5

Ta thấy 5(q + m) ⋮ 5 và 5 ⋮ 5 nên a + c chia hết cho 5.

Tương tự ta có: a - b = (5q + 3) - (5p + 3)

⇔ a - b = 5 (q - p)

Ta thấy 5(q - p) ⋮ 5 nên a - b chia hết cho 5.

Ví dụ 2: Tìm số nguyên x sao cho 215 + x chia hết cho 11.

Hướng dẫn giải:

Ta có: 215 + x 11

⇒ 215 + x ∈ B(11) = {0; 11; 22; 33;…}

⇒ x ∈ {-215; -226; -204; -237; -193; -248; -182;…}

Ví dụ 3: Khi chia số tự nhiên a cho 18, ta được số dư là 12. Hỏi a có chia hết cho 3 không? Có chia hết cho 9 không?

Hướng dẫn giải:

Ta có: a chia cho 18 dư là 12

Vậy a = 18m + 12 (m ∈ N)

18 ⋮ 3 nên 18m ⋮ 3 và 12 ⋮3. Do vậy a ⋮ 3

18 ⋮ 9 nên 18m ⋮ 9 và 12 không chia hết 9. Do vậy a không chia hết 9.

Ví dụ 4: Chứng tỏ rằng:

a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.

b) Tổng của 3 số tự nhiên liên tiếp chia hết cho 3.

c) Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4.

Hướng dẫn giải:

Gọi hai số tự nhiên liên tiếp là n, n + 1 (n ∈ N)

Nếu n ⋮ 2 thì ta có điều cần chứng tỏ

Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2

Gọi ba số tự nhiên liên tiếp là n, n + 1, n + 2 ( n ∈ N)

Ta có n + (n + 1) + (n + 2) = 3n + 3 chia hết cho 3 (Vì 3n ⋮ 3 và 3 ⋮ 3)

Gọi bốn số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3

Ta có n + (n + 1) + (n + 2) + (n + 3) = 4n + 6, không chia hết cho 4

(vì 4n ⋮ 4 và 6 Bài tập về Tính chất chia hết cực hay, chi tiết | Toán lớp 6 4)

C. Bài tập vận dụng

Câu 1: Nếu a không chia hết cho 2 và b chia hết cho 2 thì tổng a + b

A. Chia hết cho 2

B. Không chia hết cho 2

C. Có tận cùng là chữ số 2.

D. Có tận cùng là 1; 3; 5; 7; 9

Theo tính chất 2: Nếu a không chia hết cho 2 và b chia hết cho 2 thì a + b không chia hết cho 2

Chọn câu B

Câu 2: Tổng nào sau đây chia hết cho 7

A. 49 + 70

C. 7 + 134

B. 14 + 51

D. 10 + 16

Theo tính chất 1: Ta có 49 chia hết cho 7 và 70 chia hết cho 7 nên 49 + 70 chia hết cho 7.

Chọn câu A.

Câu 3: Nếu x ⋮ 2 và y ⋮ 4 thì tổng x + y chia hết cho?

A. 2

B. 4

C. 8

D. Không xác định

Ta có: x ⋮ 2, y ⋮ 4 ⇒ y ⋮ 2 ⇒ (x + y) ⋮ 2

Chọn câu A.

Câu 4: Nếu x ⋮ 12 và y ⋮ 8 thì x - y chia hết cho

A. 6

B. 3

C. 4

D. 12

Ta có Bài tập về Tính chất chia hết cực hay, chi tiết | Toán lớp 6

Vì x ⋮ 4; y x ⋮ 4 ⇒ (x - y) x ⋮ 4

Chọn câu C.

Câu 5: Chọn câu sai

A. 49 + 105 + 399 chia hết cho 7

B. 84 + 48 + 120 không chia hết cho 8

C. 18 + 54 + 12 chia hết cho 9

D. 18 + 54 + 12 không chia chia hết cho 9

Ta có: 18 ⋮ 9; 54 ⋮ 9; 12 không chia hết 9 ⇒ (18 + 54 + 12) không chia hết 9

Đáp án C sai.

Chọn câu C.

Câu 6: Có tổng M = 75 + 120 + x. Với giá trị nào của x dưới dây thì M ⋮ 3?

A. x = 7

C. x = 4

B. x = 5

D. x = 12

Ta có: 75 ⋮ 3; 120 ⋮ 3; 12 ⋮ 3 ⇒ (75 + 120 + 12) ⋮ 3

Do đó giá trị cần tìm là x = 12

Chọn câu D.

Câu 7: Tìm số tự nhiên x để A = 75 + 1003 + x chia hết cho 5

A. x ⋮ 5

B. x chia cho 5 dư 1

C. x chia cho 5 dư 2

D. x chia cho 5 dư 3

Ta thấy 75 chia hết cho 5 và 1003 không chia hết cho 5

Nên để A = 75 + 1003 + x chia hết cho 5 thì (1003 + x) chia hết cho 5

Mà 1003 chia cho 5 dư 3 nên để (1003 + x) chia hết cho 5 thì x chia cho 5 dư 2

Chọn câu C.

Câu 8: Cho A = 12 + 15 + 36 + x, x ∈ N. Tìm điều kiện của x để A không chia hết cho 9.

A. x chia hết cho 9

B. x không chia hết cho 9

C. x chia hết cho 4

D. x chia hết cho 3

Ta có: A = (12 + 15) + 36 + x

Vì 12 + 15 = 27 ⋮ 9; 36 ⋮ 9 ⇒ (12 + 15 + 36) ⋮ 9

Do đó để A không chia hết cho 9 thì x không chia hết cho 9

Chọn câu B.

Câu 9: Xét xem hiệu nào dưới đây chia hết cho 7?

A. 49 − 35 − 7

B. 50 − 36 − 8

C. 80 − 17 − 14

D. 79 − 19 − 15

Ta có: 49 chia hết cho 7; 35 chia hết cho 7; 7 chia hết cho 7 nên 49 – 35 – 7 chia hết cho 7

Chọn câu A

Câu 10: Cho tổng A= 14 + 16 + 18 + 20. Dựa vào tính chất chia hết của một tổng, A sẽ chia hết cho?

A. 2

B. 5

C. 7

D. 8

Ta có: 14 chia hết cho 2; 16 chia hết cho 2; 18 chia hết cho 2; 20 chia hết cho 2 nên A = 14 + 16 + 18 + 20 chia hết cho 2

Chọn câu A

Xem thêm các dạng bài tập Toán lớp 6 chọn lọc, có đáp án hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 6 hay khác:

Ngân hàng trắc nghiệm lớp 6 tại khoahoc.vietjack.com

GIẢM GIÁ 40% KHÓA HỌC VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 6 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Tiếng Anh lớp 6 - cô Tuyết Nhung

4.5 (243)

799,000đs

599,000 VNĐ

Toán 6 - Cô Diệu Linh

4.5 (243)

799,000đ

599,000 VNĐ

Văn 6 - Cô Ngọc Anh

4.5 (243)

799,000đ

599,000 VNĐ

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k9: fb.com/groups/hoctap2k9/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết - Bài tập Toán lớp 6 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Số học 6 và Hình học 6.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Nhóm học tập 2k9