Toán 7 Bài 7: Đa thức một biến

Toán 7 Bài 7: Đa thức một biến

A. Lý thuyết

1. Đa thức một biến

   • Đa thức một biến là tổng của những đơn thức của cùng một biến.

   • Một số được coi là một đơn thức một biến.

   • Bậc của đa thức một biến (khác đa thức không, đã thu gọn) là số mũ lớn nhất của biến trong đa thức đó.

Ví dụ: Đa thức 5x5 + 4x3 - 2x2 + x là đa thức một biến (biến x); bậc của đa thức là 5.

2. Sắp xếp một đa thức một biến

Để thuận lợi cho việc tính toán đối với các đa thức một biến, người ta thường sắp xếp các hạng tử của chúng theo lũy thừa tăng hoặc giảm của biến.

Ví dụ 1: Đối với đa thức P(x) = 6x + 3 - 6x2 + x3 + 2x4

   + Khi sắp xếp các hạng tử của nó theo lũy thừa giảm của biến, ta được:

P(x) = 2x4 + x3 - 6x2 + 6x + 3

   + Khi sắp xếp các hạng tử của nó theo lũy thừa tăng của biến, ta được:

P(x) = 3 + 6x - 6x2 + x3 + 2x4

Nhận xét:

Mọi đa thức bậc 2 của biến x, sau khi đã sắp xếp các hạng tử của chúng theo lũy thừa giảm của biến, đều có dạng: ax2 + bx + c

Trong đó a,b,c là các số cho trước và a ≠ 0.

Chú ý:

   + Để sắp xếp các hạng tử của một đa thức, trước hết ta phải thu gọn đa thức đó.

   + Những chữ đại diện cho các số xác định cho trước được goi là hằng số.

Ví dụ 2: Cho đa thức P(x) = 2 + 5x2 - 3x3 + 4x - 2x - x3 + 6x5. Thu gọn và sắp xếp đa thức

P(x) = 2 + 5x2 - 3x3 + 4x2 - 2x - x3 + 6x5 = 6x5 + (-3x3 - x3) + (5x2 + 4x2) - 2x + 2 = 6x5 - 4x3 + 9x2 - 2x + 2

3. Hệ số

Hệ số của lũy thừa 0 của biến gọi là hệ số tự do; hệ số của lũy thừa cao nhất của biến gọi là hệ số cao nhất.

Ví dụ: Các hệ số của đa thức 6x5 - x4 + 5x2 - x + 2 là 6; -1; 5; -1; 2

Hệ số tự do là: 2

Hệ số cao nhất là: 6

B. Trắc nghiệm & Tự luận

I. Câu hỏi trắc nghiệm

Bài 1: Đa thức nào dưới đây là đa thức một biến?

A. x2 + y + 1

B. x3 - 2x2 + 3

C. xy + x2 - 3

D. xyz - yz + 3

Đa thức x3 - 2x2 + 3 là đa thức một biến

Chọn đáp án B

Bài 2: Sắp xếp 6.x3 + 5x4 - 8x6 - 3x2 + 4 theo lũy thừa giảm dần của biến ta được

A. -8x6 + 5x4 + 6x3 - 3x2 + 4

B. -8x6 - 5x4 + 6x3 - 3x2 + 4

C. 8x6 + 5x4 + 6x3 - 3x2 + 4

D. 8x6 + 5x4 + 6x3 + 3x2 + 4

Ta có 6x3 + 5x4 - 8x6 - 3x2 + 4 = -8x6 + 5x4 + 6x3 - 3x2 + 4

Chọn đáp án A

Bài 3: Đa thức 7x12 - 8x10 + x11 - x5 + 6x6 + x - 10 được sắp xếp theo lũy thừa tăng dần của biến ta được:

A. -10 + x + x5 + 6x6 - 8x10 + x11 + 7x12

B. 10 + x + x5 + 6x6 - 8x10 + x11 + 7x12

C. 10 + x - x5 + 6x6 - 8x10 + x11 + 7x12

D. -10 + x - x5 + 6x6 - 8x10 + x11 + 7x12

Ta có: 7x12 - 8x10 + x11 - x5 + 6x6 + x - 10

= -10 + x - x5 + 6x6 - 8x10 + x11 + 7x12

Chọn đáp án D

Bài 4: Với a, b, c là các hằng số , hệ số tự do của đa thức x2 + (a + b)x - 5a + 3b + 2 là:

A. 5a + 3b + 2               B. -5a + 3b + 2                C. 2               D. 3b + 2

Hệ số tự do của đa thức x2 + (a + b)x - 5a + 3b + 2 là: -5a + 3b + 2

Chọn đáp án B

Bài 5: Hệ số cao nhất của đa thức 5x6 + 6x5 + x4 - 3x2 + 7 là:

A. 6            B. 7            C. 4            D. 5

Hệ số cao nhất của đa thức 5x6 + 6x5 + x4 - 3x2 + 7 là: 5

Chọn đáp án D

Bài 6: Cho đa thức A = x4 - 4x3 + x - 3x2 + 1. Tính giá trị của A tại x = -2

A. A = -35             B. A = 53             C. A = 33             D. A = 35

Thay x = -2 vào biểu thức A , ta có

A = (-2)4 - 4.(-2)3 + (-2) - 3.(-2)2 + 1 = 16 + 32 - 2 - 12 + 1 = 35

Vậy với x = -2 thì A = 35

Chọn đáp án D

II. Bài tập tự luận

Bài 1: Thu gọn các đa thức sau và sắp xếp theo lũy thừa giảm dần của biến

a) 2x3 - x5 + 3x4 + x2 - (1/2)x3 + 3x5 - 2x2 - x4 + 1

b) x7 - 3x4 + 2x3 - x2 - x4 - x + x7 - x3 + 5

Trắc nghiệm: Đa thức một biến - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Bài 2: Tính giá trị của các biểu thức sau:

a) x + x2 + x3 + x4 + .... + x99 + x100 tại x = -1

b) x2 + x4 + x6 + .... + x98 + x100 tại x = -1

Trắc nghiệm: Đa thức một biến - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Các bài Tổng hợp Lý thuyết và Bài tập Toán lớp 7 có đáp án và lời giải chi tiết khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.