Nhận biết và chứng minh tam giác cân, tam giác đều (cách giải + bài tập)
Chuyên đề phương pháp giải bài tập Nhận biết và chứng minh tam giác cân, tam giác đều lớp 7 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Nhận biết và chứng minh tam giác cân, tam giác đều.
Nhận biết và chứng minh tam giác cân, tam giác đều (cách giải + bài tập)
1. Phương pháp giải
a) Nhận biết và chứng minh tam giác cân
Để nhận biết và chứng minh một tam giác là tam giác cân, ta sử dụng một trong hai cách sau:
Cách 1: Chứng minh tam giác đó có hai cạnh bằng nhau. Khi đó tam giác đó cân tại giao điểm của hai cạnh đó;
Cách 2: Chứng minh tam giác đó có hai góc bằng nhau. Khi đó tam giác đó cân tại đỉnh còn lại.
Lưu ý: Khi chứng minh một tam giác là tam giác cân, ta cần chỉ rõ tam giác đó cân tại đỉnh nào. Ví dụ ∆ABC cân tại A, ∆MNP cân tại N,...
b) Nhận biết và chứng minh tam giác đều
Để nhận biết và chứng minh một tam giác là tam giác đều, ta sử dụng một trong bốn cách sau:
Cách 1: Chứng tỏ tam giác đó có ba cạnh bằng nhau;
Cách 2: Chứng tỏ tam giác đó có ba góc bằng nhau;
Cách 3: Chứng tỏ tam giác đó có hai góc bằng 60°;
Cách 4: Chứng tỏ tam giác đó là tam giác cân và có một góc bằng 60°.
2. Ví dụ minh họa:
Ví dụ 1. Cho hình vẽ bên.
Hỏi tam giác nào là tam giác cân, tam giác nào là tam giác đều?
Hướng dẫn giải:
+ Xét ∆ABC, có: AB = BC = 2 cm.
Do đó ∆ABC cân tại B.
+ Xét ∆DEF, có: .
Do đó ∆DEF là tam giác đều.
+ Xét ∆MNP, có: MN = MP và
Do đó ∆MNP là tam giác đều.
+ ∆XYZ vuông tại X: .
Suy ra
Do đó .
Suy ra ∆XYZ cân tại X.
(Vì ∆XYZ cân tại X và có , do đó ta gọi ∆XYZ là tam giác vuông cân tại X).
Vậy ở hình bên, ta có:
- Các tam giác cân là: ∆ABC (cân tại B) và ∆XYZ (vuông cân tại X).
- Các tam giác đều là: ∆DEF và ∆MNP.
Ví dụ 2. Cho ba điểm A, B, C thẳng hàng theo thứ tự đó. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều ACD, BCE. Gọi I, K theo thứ tự là trung điểm của AE và BD. Chứng minh rằng ∆CIK là tam giác đều.
Hướng dẫn giải:
Ta có ∆ACD đều. Suy ra (1).
Ta có ∆BCE đều. Suy ra (2).
Từ (1), (2), ta suy ra .
Do đó
Khi đó ta có
Xét ∆ACE và ∆DCB, có:
AC = DC (∆ACD đều).
(chứng minh trên).
CE = CB (∆BCE đều).
Do đó ∆ACE = ∆DCB (cạnh – góc – cạnh).
Suy ra và AE = DB (cặp góc và cặp cạnh tương ứng).
Vì I là trung điểm AE nên ta có AE = 2AI.
Vì K là trung điểm DB nên ta có DB = 2DK.
Mà AE = DB (chứng minh trên).
Do đó 2AI = 2DK.
Suy ra AI = DK.
Xét ∆ACI và ∆DCK, có:
AC = DC (∆ACD đều).
(chứng minh trên).
AI = DK (chứng minh trên).
Do đó ∆ACI = ∆DCK (cạnh – góc – cạnh).
Suy ra CI = CK.
Do đó ∆CIK cân tại C (*).
Ta có (vì ∆ACI = ∆DCK).
Do đó
Ta suy ra .
Mà (∆ACD đều).
Do đó (**).
Từ (*), (**), ta suy ra ∆CIK là tam giác đều.
3. Bài tập tự luyện
Bài 1. Cho hình vẽ bên.
Hình bên có bao nhiêu tam giác cân?
A. 0;
B. 1;
C. 2;
D. 3.
Bài 2. Chọn phát biểu sai trong các phát biểu sau.
A. Để nhận biết và chứng minh một tam giác là tam giác đều, ta cần chứng minh tam giác đó có ba cạnh bằng nhau;
B. Để nhận biết và chứng minh một tam giác là tam giác cân, ta cần chứng minh tam giác đó hai góc bằng nhau;
C. Để nhận biết và chứng minh một tam giác là tam giác đều, ta cần chứng minh tam giác đó có một góc bằng 60°;
D. Để nhận biết và chứng minh một tam giác là tam giác cân, ta cần chứng minh tam giác đó có hai góc bằng nhau.
Bài 3. Cho ∆ABC cân tại A. Trên cạnh BC lấy các điểm M, N sao cho BM = CN. Kết luận nào sau đây là đúng?
A. ∆AMN cân tại A;
B. ∆AMN cân tại M;
C. ∆AMN cân tại N;
D. ∆AMN cân tại B.
Bài 4. Cho hình bên.
Chọn đáp án đúng.
A. ∆OPM và ∆ONQ là các tam giác đều;
B. ∆OMN là tam giác đều;
C. ∆OPM và ∆ONQ là các tam giác cân;
D. Cả hai đáp án B, C đều đúng.
Bài 5. Cho . Lấy điểm A thuộc tia phân giác của . Kẻ AB ⊥ Ox tại B, AC ⊥ Oy tại C. Hỏi ∆ABC là tam giác gì?
A. ∆ABC là tam giác cân tại A;
B. ∆ABC là tam giác cân tại B;
C. ∆ABC là tam giác là cân tại C;
D. ∆ABC là tam giác đều.
Bài 6. Cho ∆ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc canh AB sa cho AD = AE. Gọi I là giao điểm của BD và CE. Hỏi ∆IBC là tam giác gì?
A. ∆IBC là tam giác cân tại I;
B. ∆IBC là tam giác cân tại B;
C. ∆IBC là tam giác cân tại C;
D. ∆IBC là tam giác đều.
Bài 7. Cho ∆ABC vuông tại A (AB < AC). Tia phân giác của cắt BC tại D. Qua D kẻ đường thẳng vuông góc BC, cắt AC tại E. Trên AB lấy điểm F sao cho AF = AE. Hỏi ∆DBF là tam giác gì?
A. ∆DBF cân tại B;
B. ∆DBF cân tại F;
C. ∆DBF cân tại D;
D. ∆DBF đều.
Bài 8. Cho hình vẽ.
Tam giác cân trong hình vẽ bên là:
A. ∆ACD;
B. ∆ABD;
C. ∆BCD;
D. Hình vẽ bên không có tam giác nào cân.
Bài 9. Cho hình vẽ.
Tam giác đều trong hình vẽ bên là:
A. ∆MNP;
B. ∆PNH;
C. ∆MPH;
D. ∆MNH.
Bài 10. Cho ∆ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự các điểm D, E, F sao cho AD = BE = CF. Hỏi ∆DEF là tam giác gì?
A. ∆DEF đều;
B. ∆DEF là tam giác vuông tại D;
C. ∆DEF là tam giác vuông cân tại F;
D. ∆DEF là tam giác vuông tại E.
Xem thêm các dạng bài tập Toán 7 hay, chi tiết khác:
Vận dụng định nghĩa, tính chất của tam giác cân để chứng minh tính chất khác
Nhận biết và chứng minh một đường thẳng là đường trung trực của một đoạn thẳng
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều