Chứng minh hệ thức trong tứ giác (hay, chi tiết)

Với Chứng minh hệ thức trong tứ giác hay, chi tiết môn Toán lớp 8 phần Hình học sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 1: Tứ giác để đạt điểm cao trong các bài thi môn Toán 8.

Chứng minh hệ thức trong tứ giác (hay, chi tiết)

A. Phương pháp giải. 

Chứng minh quan hệ về độ dài: 

  • Sử dụng bất đẳng thức trong tam giác. Với   là độ dài ba cạnh của một tam giác thì: 

Chứng minh hệ thức trong tứ giác hay, chi tiết 

  • Áp dụng định lý Pitago trong tam giác vuông.

B. Ví dụ minh họa

Ví dụ 1. Chứng minh rằng: Trong một tứ giác mỗi đường chéo nhỏ hơn nửa chu vi của tứ giác.

Giải

Chứng minh hệ thức trong tứ giác hay, chi tiết

Đặt độ dài các cạnh như hình vẽ thì nửa chu vi của tứ giác ABCD là:  

Chứng minh hệ thức trong tứ giác hay, chi tiết

Áp dụng bất đẳng thức tam giác vào hai tam giác ABD và BCD, ta được:

Chứng minh hệ thức trong tứ giác hay, chi tiết

Từ (1) và (2) suy ra

Chứng minh hệ thức trong tứ giác hay, chi tiết

hay  

Chứng minh hệ thức trong tứ giác hay, chi tiết

Chứng minh tương tự, ta cũng được  

Chứng minh hệ thức trong tứ giác hay, chi tiết

Vậy mỗi đường chéo nhỏ hơn nửa chu vi của tứ giác.

Ví dụ 2. Chứng minh rằng: Trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối.

Giải

Chứng minh hệ thức trong tứ giác hay, chi tiết

Gọi O là giao điểm của AC và BD.

Áp dụng bất đẳng thức tam giác vào hai tam giác chứa hai cạnh đối nhau AB, CD là OAB, OCD ta được:

OA + OB > AB hay OA + OB > a           (1)

OC + OD > CD hay OC + OD > c          (2)

Từ (1) và (2) suy ra: OA + OB + OC + OD > a + c  ⇒ AC + BD > a + c

Chứng minh tương tự, ta cũng được AC + BD > b + d

Vậy tổng hai đường chéo lớn hơn tổng hai cạnh đối.

Ví dụ 3. Chứng minh rằng: Trong một tứ giác tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.

Giải

Chứng minh hệ thức trong tứ giác hay, chi tiết

Giả sử tứ giác ABCD có AB = a, BC = b, CD = c, DA = d. Gọi O là giao điểm của AC, BD ta có: AC + BD = AO + OB + OC + OD > AB + CD = a + c (bất đẳng thức tam giác)

Tương tự ta chứng minh được: AC + BD > b + d

 Chứng minh hệ thức trong tứ giác hay, chi tiết

Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.

Theo bất đẳng thức tam giác ta có:

AC < AB + BC = a + b; AC < AD + DC = c + d

BD < AB + AD = a + d; BD < BC + CD = b + c

 ⇒2AC + 2BD < 2a + 2b + 2c + 2d

 ⇒AC + BD < a + b + c + d.

Vậy tổng hai đường chéo nhỏ hơn chu vi tứ giác.

Ví dụ 4. Tứ giác ABCD có Chứng minh hệ thức trong tứ giác hay, chi tiết. Chứng minh rằng:Chứng minh hệ thức trong tứ giác hay, chi tiết

Giải

Chứng minh hệ thức trong tứ giác hay, chi tiết

Gọi K là giao điểm của AD và BC.

Chứng minh hệ thức trong tứ giác hay, chi tiết nên Chứng minh hệ thức trong tứ giác hay, chi tiết (định lý tổng ba góc của tam giác)

Áp dụng định lý Pyatgo

Xét ΔKAC vuông tại K ta có:  Chứng minh hệ thức trong tứ giác hay, chi tiết

Xét ΔKBD vuông tại K ta có: Chứng minh hệ thức trong tứ giác hay, chi tiết

Xét ΔKAB vuông tại K ta có: Chứng minh hệ thức trong tứ giác hay, chi tiết

Xét ΔKCD vuông tại K ta có: Chứng minh hệ thức trong tứ giác hay, chi tiết

Từ đó  

Chứng minh hệ thức trong tứ giác hay, chi tiết

Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 sách mới các môn học
Tài liệu giáo viên