Bài tập trắc nghiệm Trường hợp đồng dạng thứ nhất lớp 8 (có đáp án)

Với bài tập trắc nghiệm Trường hợp đồng dạng thứ nhấtlớp 8 có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm Trắc nghiệm Trường hợp đồng dạng thứ nhất

Bài tập trắc nghiệm Trường hợp đồng dạng thứ nhất lớp 8 (có đáp án)

Bài 1: Hai tam giác nào không đồng dạng khi biết độ dài các cạnh của hai tam giác lần lượt là:

A. 4cm, 5cm, 6cm và 12cm, 15cm, 18cm.

B. 3cm, 4cm, 6cm và 9cm, 12cm, 18cm

C. 1,5cm, 2cm, 2cm và 1cm, 1cm, 1cm

D. 14cm, 15cm, 16cm và 7cm, 7,5cm, 8cm

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: C

Quảng cáo

Bài 2: Hai tam giác nào không đồng dạng khi biết độ dài các cạnh của hai tam giác lần lượt là:

A. 2cm, 3cm, 4cm và 10cm, 15cm, 20cm.

B. 3cm, 4cm, 6cm và 9cm, 12cm, 16cm

C. 2cm, 2cm, 2cm và 1cm, 1cm, 1cm

D. 14cm, 15cm, 16cm và 7cm, 7,5cm, 8cm

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: B

Bài 3: Cho 2 tam giác RSK và PQM có Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án, khi đó ta có:

A. ΔRSK ~ ΔPQM    

B. ΔRSK ~ ΔQPM

C. ΔRSK ~ ΔMPQ     

D. ΔRSK ~ ΔQMP

Lời giải

2 tam giác RSK và PQM có Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án, khi đó ta có: ΔRSK ~ ΔPQM

Đáp án cần chọn là: A

Bài 4: Cho 2 tam giác RSK và PQM có Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án, khi đó ta có:

A. ΔRSK ~ ΔPQM    

B. ΔRSK ~ ΔQPM

C. ΔRSK ~ ΔPMQ     

D. ΔRSK ~ ΔQMP

Lời giải

2 tam giác RSK và PQM có Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án, khi đó ta có: ΔRSK ~ ΔPMQ

Đáp án cần chọn là: C

Bài 5: Cho ΔABC đồng dạng với ΔMNP. Biết AB = 5cm, BC = 6cm, MN = 10cm, MP = 5cm. Hãy chọn câu đúng:

A. NP = 12cm, AC = 2,5cm  

B. NP = 2,5cm, AC = 12cm

C. NP = 5cm, AC = 10cm

D. NP = 10cm, AC = 5cm

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: A

Quảng cáo

Bài 6: Cho ΔABC đồng dạng với ΔMNP. Biết AB = 2cm, BC = 3cm, MN = 6cm, MP = 6cm. Hãy chọn khẳng định sai:

A. AC = 2cm                          

B. NP = 9cm

C. ΔMNP cân tại M   

D. ΔABC cân tại C

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Vậy NP = 9cm, AC = 2cm nên A, B đúng.

Tam giác ABC cân tại A, MNP cân tại M nên C đúng, D sai.

Đáp án cần chọn là: D

Bài 7: Cho tam giác ΔABC ~ ΔEDC như hình vẽ, tỉ số độ dài của x và y là:

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Ta có: ΔABC ~ ΔEDC ⇒ Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: B

Bài 8: Cho tam giác ΔABC ~ ΔEDC như hình vẽ, tỉ số độ dài của x và y là:

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Lời giải

Ta có: ΔABC ~ ΔEDC ⇒ Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: B

Quảng cáo

Bài 9: ΔABC ~ ΔDEF theo tỉ số k1, ΔMNP ~ ΔDEF theo tỉ số k2. ΔABC ~ ΔMNP theo tỉ số nào?

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Lời giải

Vì ΔABC ~ ΔDEF theo tỉ số k1, ΔMNP ~ ΔDEF theo tỉ số k2 nên ta có:

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: D

Bài 10: ΔDEF ~ ΔABC theo tỉ số k1, ΔMNP ~ ΔDEF theo tỉ số k2. ΔABC ~ ΔMNP theo tỉ số nào?

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Lời giải

Vì ΔDEF ~ ΔABC theo tỉ số k1, ΔMNP ~ ΔDEF theo tỉ số k2 nên ta có:

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: A

Bài 11: Cho ΔABC ~ ΔIKH. Có bao nhiêu khẳng định đúng trong các khẳng định sau:

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

A. 0                

B. 1                

C. 2                

D. 3

Lời giải

Vì ΔABC ~ ΔIKH nên Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án nên (I) và (II) đúng, (III) sai.

Đáp án cần chọn là: C

Bài 12: Tứ giác ABCD có AB = 8cm, BC = 15cm, CD = 18cm, AD = 10cm, BD = 12cm. Chọn câu đúng nhất:

A. ΔABD ~ ΔBDC                            

B. ABCD là hình thang

C. ABCD là hình thang vuông

D. Cả A, B đều đúng

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Ta có: Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Nên ΔABD ~ ΔBDC (c - c - c)

ΔABD ~ ΔBDC nên góc ABD = BDC.

Mà hai góc này ở vị trí so le trong nên AB // CD.

Vậy ABCD là hình thang.

Lại có BD2 = 144 < 164 = AD2 + AB2 nên ΔABD không vuông. Do đó ABCD không là hình thang vuông

Vậy A, B đều đúng, C sai.

Đáp án cần chọn là: D

Quảng cáo

Bài 13: Tứ giác ABCD có AB = 9cm, BC = 20cm, CD = 25cm, AD = 12cm, BD = 15cm. Chọn câu sai:

A. ΔABD ~ ΔBDC                            

B. ABCD là hình thang

C. ABCD là hình thang vuông

D. ABCD là hình thang cân

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Ta có: Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Nên ΔABD ~ ΔBDC (c - c - c)

ΔABD ~ ΔBDC nên góc ABD = BDC.

Mà hai góc này ở vị trí so le trong nên AB // CD.

Vậy ABCD là hình thang.

Lại có BD2 = 225 = AD2 + AB2 nên ΔABD vuông tại A. Do đó ABCD là hình thang vuông

Vậy A, B, C đều đúng, D sai

Đáp án cần chọn là: D

Bài 14: Cho tam giác ABC. Các điểm D, E, F theo thứ tự làm trung điểm của BC, CA, AB. Các điểm A’, B’, C’ theo thứ tự là trung điểm của EF, DF, DE. Chọn câu đúng?

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Vì D, E, F theo thứ tự làm trung điểm của BC, CA, AB nên EF, ED, FD là các đường trung bình của tam giác ABC nên Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án suy ra ΔABC ~ ΔDEF (c - c - c) theo tỉ số đồng dạng k = 2.

Tương tự ta có A’B’, B’C’, C’A’ là các đường trung bình của tam giác DEF nên ΔA’B’C’ ~ ΔDEF theo tỉ số k = 1/2

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: C

Bài 15: Cho tam giác ABC. Các điểm D, E, F theo thứ tự làm trung điểm của BC, CA, AB. Các điểm A’, B’, C’ theo thứ tự là trung điểm của EF, DF, DE. Xét các khẳng định sau:

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Số khẳng định đúng là:

A. 2                

B. 1                

C. 3                

D. 0

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Vì D, E, F theo thứ tự làm trung điểm của BC, CA, AB nên EF, ED, FD là các đường trung bình của tam giác ABC nên Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án  suy ra ΔEDF ~ ΔABC (c - c - c) theo tỉ số đồng dạng k = Trắc nghiệm Diện tích hình chữ nhật có đáp án hay (I) đúng.

Tương tự ta có A’B’, B’C’, C’A’ là các đường trung bình của tam giác DEF nên ΔA’B’C’ ~ ΔDEF theo tỉ số k = Trắc nghiệm Diện tích hình chữ nhật có đáp án nên (III) sai

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Do đó ΔA’B’C’ ~ ΔABC (c - c - c) theo tỉ số k = 1/4 hay (II) đúng.

Do đó có 2 khẳng định đúng

Đáp án cần chọn là: A

Bài 16: Cho ΔABC nhọn, kẻ đường cao BD và CE, vẽ các đường cao DF và EG của ΔADE.

1. ΔABD đồng dạng với tam giác nào dưới đây?

A. ΔAEG                                           

B. ΔABC                               

C. Cả A và B                          

D. Không có tam giác nào

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Xét ΔABD và ΔAEG, ta có:

 BD ⊥ AC (BD là đường cao)

 EG ⊥ AC (EG là đường cao)

⇒ BD // EG

Theo định lý Talet, ta có: Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

⇒ ΔAEG ~ ΔABD (c - c - c) (đpcm)

Đáp án cần chọn là: A

2. Chọn khẳng định đúng?

A. AD.AE = AB.AF              

B. AD.AE = AB.AG = AC.AF

C. AD.AE = AC.GA             

D. AD.AE = AB.AF = AC.AG

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Từ (1) và (2) ta có: AD.AE = AB.AG = AC.AF

Đáp án cần chọn là: B

Bài 17: Cho ΔABC nhọn, kẻ đường cao BD và CE, vẽ các đường cao DF và EG của ΔADE.

1. Xét các cặp tam giác sau đây, số cặp tam giác đồng dạng với nhau là:

(1) ΔAEG và ΔABD

(2) ΔADF và ΔACE

(3) ΔABC và ΔAEC

A. 1                

B. 0                

C. 2                

D. 3

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Xét ΔABD và ΔAEG, ta có:

 BD ⊥ AC (BD là đường cao)

 EG ⊥ AC (EG là đường cao)

⇒ BD // EG

Theo định lý Talet, ta có: Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

⇒ ΔAEG ~ ΔABD (c - c - c) nên (1) đúng.

Tương tự ta cũng chứng minh được ΔADF ~ ΔACE nên (2) đúng

Dễ thấy (3) sai vì Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Vậy có hai cặp tam giác đồng dạng trong các cặp đã nêu.

Đáp án cần chọn là: C

2. Chọn khẳng định không đúng?

A. AD.AE = AB.AFG

B. AD.AE = AC.AF

C. AD.AE = AC.FD  

D. AE.EG = AB.BD

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án

Đáp án cần chọn là: D

Bài 18: Một tam giác có cạnh nhỏ nhất bằng 8, hai cạnh còn lại bằng x và y (x < y). Một tam giác khác có cạnh lớn nhất bằng 27, hai cạnh còn lại cũng bằng x và y. Tính x và y để hai tam giác đó đồng dạng.

A. x = 5; y = 10                      

B. x = 6; y = 12

C. x = 12; y = 18                    

D. x = 6; y = 18

Lời giải

Tam giác thứ nhất có các cạnh là 8 < x < y

Tam giác thứ hai có các cạnh là x < y < 27

Vì hai tam giác đồng dạng nên Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án ta có x.y = 8.27 và x2 = 8y.

Do đó x2 = 8y = Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án nên x3 = 64.27 = (4.3)3

Vậy x = 12, y = 18

Đáp án cần chọn là: C

Bài 19: Một tam giác có cạnh nhỏ nhất bằng 12, hai cạnh còn lại bằng x và y (x < y). Một tam giác khác có cạnh lớn nhất bằng 40,5, hai cạnh còn lại cũng bằng x và y. Tính x và y để hai tam giác đó đồng dạng, từ đó suy ra giá trị của S = x + y bằng:

A. 45              

B. 60              

C. 55              

D. 35

Lời giải

Tam giác thứ nhất có các cạnh là 12 < x < y

Tam giác thứ hai có các cạnh là x < y < 40,5

Vì hai tam giác đồng dạng nên Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án ta có x.y = 12.40,5 và x2 = 12y.

Do đó x2 = 12y = Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án nên x3 = 12.12.40,5 = 183 suy ra x = 18

Suy ra y = Trắc nghiệm Trường hợp đồng dạng thứ nhất có đáp án = 27

Vậy x = 18, y = 27 ⇒ S = 18 + 27 = 45

Đáp án cần chọn là: A

Xem thêm các bài tập trắc nghiệm Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 sách mới các môn học
Tài liệu giáo viên