Trắc nghiệm Đồ thị hàm số y = ax2 (a ≠ 0) có đáp án - Toán lớp 9
Trắc nghiệm Đồ thị hàm số y = ax2 (a ≠ 0) có đáp án
Tài liệu bài tập trắc nghiệm Đồ thị hàm số y = ax2 (a ≠ 0) có đáp án Toán lớp 9 chọn lọc, có đáp án với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.
Câu 1: Hình vẽ dưới đây là của đồ thị hàm số nào?
Lời giải:
Từ hình vẽ ta thấy đồ thị đi qua điểm có tọa độ (3; 3), ta thay x = 3; y = 3 vào từng hàm số ở các đáp án ta được:
+ Đáp án A: y = x2 ⇔ 3 = 33 ⇔ 3 = 9 (vô lý) nên loại A
+ Đáp án B: (vô lý) nên loại B
+ Đáp án C: y = 3x2 ⇔ 3 = 3.33 ⇔ 3 = 27 (vô lý) nên loại C
+ Đáp án D: (luôn đúng) nên chọn D.
Đáp án cần chọn là: D
Câu 2: Cho hàm số có đồ thị là (P). Có bao nhiêu điểm trên (P) có tung độ gấp đôi hoành độ?
A. 5
B. 4
C. 3
D. 1
Lời giải:
Gọi điểm M (x; y) là điểm cần tìm. Vì M có tung độ gấp đôi hoành độ nên: M (x; 2x)
Thay tọa độ điểm M vào hàm số ta được:
Đáp án cần chọn là: D
Câu 3: Cho hàm số: có đồ thị là (P). Điểm trên (P) (khác gốc tọa độ O(0; 0) có tung độ cấp ba lần hoành độ thì có hoành độ là:
Lời giải:
Gọi điểm M (x; y) là điểm cần tìm. Vì M có tung độ gấp ba lần hoành độ nên: M(x; 3x)
Đáp án cần chọn là: B
Câu 4: Trong các điểm: A (1; 2); B (−1; −1); C (10; −200); D(√10;10) có bao nhiêu điểm thuộc đồ thị hàm số (P): y = −x22
A. 1
B. 4
C. 3
D. 2
Lời giải:
+) Thay tọa độ điểm A (1; 2) vào hàm số y = −x2 ta được 2 = −12 (vô lý) nên A ∉ (P)
+) Thay tọa độ điểm C (10; −200) vào hàm số y = −x2 ta được – 200 = − (10)2
⇔ −200 = −100 (vô lý) nên C ∉ (P)
+) Thay tọa độ điểm D (√10;10) vào hàm số y = −x2 ta được (luôn đúng) nên D ∈ (P)
+) Thay tọa độ điểm B (−1; −1) vào hàm số y = −x2 ta được −1 = − (−1)2
⇔ −1 = −1 (luôn đúng) nên B ∈ (P)
Đáp án cần chọn là: D
Câu 5: Trong các điểm A (5; 5); B (−5; −5); C (10; 20); D (√10; 2) có bao nhiêu điểm không thuộc đồ thị hàm số
A. 1
B. 4
C. 3
D. 2
Lời giải:
+) Thay tọa độ điểm A (5; 5) vào hàm số ta được (luôn đúng) nên A ∈ (P)
+) Thay tọa độ điểm B (−5; −5) vào hàm số ta được
⇔ −5 = 5 (vô lý) nên B ∉ (P)
+) Thay tọa độ điểm D (√10; 2) vào hàm số ta được
⇔ 2 = 2 (luôn đúng) nên D ∈ (P)
+) Thay tọa độ điểm C (10; 20) vào hàm số ta được
⇔ 20 = 20 (luôn đúng) nên C ∈ (P)
Vậy có 1 điểm không thuộc (P): là điểm B (−5; −5)
Đáp án cần chọn là: A
Câu 6: Cho (P): . Tìm tọa độ giao điểm của (P) và (d)
Lời giải:
Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d
Thay x = 1 vào hàm số
Nên tọa độ giao điểm cần tìm là
Đáp án cần chọn là: A
Câu 7: Cho parabol . Xác định m để điểm A (√2; m) nằm trên parabol.
Lời giải:
Thay x = √2; y = m vào hàm số ta được:
Đáp án cần chọn là: A
Câu 8: Cho parabol (P) . Xác định m để điểm nằm trên parabol
Lời giải:
Thay ta được:
Đáp án cần chọn là: D
Câu 9: Cho parabol (P): y = 2x2 và đường thẳng (d): y = x + 1. Số giao điểm của đường thẳng d và parabol (P) là:
A. 1
B. 0
C. 3
D. 2
Lời giải:
Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d
Vậy có hai giao điểm của đường thẳng d và parabol (P)
Đáp án cần chọn là: D
Câu 10: Cho parabol (P): y = 5x2 và đường thẳng (d): y = −4x – 4. Số giao điểm của đường thẳng d và parabol (P) là:
A. 1
B. 0
C. 3
D. 2
Lời giải:
Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d
5x2 = −4x – 4 ⇔ 5x2 + 4x + 4 = 0 ⇔ 4x2 + x2 + 4x + 4 = 0 ⇔ x2 + (x + 2)2 = 0(*)
Xét x2 + (x + 2)2 ≥ 0; ∀x và dấu “=” xảy ra khi (vô lý)
nên x2 + (x + 2)2 > 0, ∀x
Hay phương trình (*) vô nghiệm
Vậy không có giao điểm của đường thẳng (d) và parabol (P)
Đáp án cần chọn là: B
Câu 11: Cho parabol (P): y = (m – 1)x2 và đường thẳng (d): y = 3 – 2x. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 5.
A. m = 5
B. m = 7
C. m = 6
D. m = −6
Lời giải:
Thay y = 5 vào phương trình đường thẳng d ta được 5 = 3 – 2x ⇔ x = −1
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (−1; 5)
Thay x = −1; y = 5 vào hàm số y = (m – 1)x2 ta được:
(m – 1). (−1)2 = 5 ⇔ m – 1 = 5 ⇔ m = 6
Vậy m = 6 là giá trị cần tìm
Đáp án cần chọn là: C
Câu 12: Cho parabol (P): và đường thẳng (d): y = 5x + 4. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 9
A. m = 5
B. m = 15
C. m = 6
D. m = 16
Lời giải:
Thay y = 9 vào phương trình đường thẳng d ta được 9 = 5x + 4 ⇔ x = 1
nên tọa độ giao điểm của đường thẳng d và parabol (P) là 91; 9)
Thay x = 1; y = 9 vào hàm số ta được
Vậy m = 16 là giá trị cần tìm
Đáp án cần chọn là: D
Câu 13: Cho parabol (P): và đường thẳng (d): y = 2x + 2. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 4. Tìm hoành độ giao điểm còn lại của d và parabol (P)
Lời giải:
Thay y = 4 vào phương trình đường thẳng d ta được 2x + 2 = 4 ⇔ x = 1
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (1; 4)
Thay x = 1; y = 4 vào hàm số ta được:
Xét phương trình hoành độ giao điểm của d và (P):
Đáp án cần chọn là: A
Câu 14: Cho parabol (P): và đường thẳng (d): y = 3x – 5. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 1. Tìm m và hoành độ giao điểm còn lại của d và parabol (P)
Lời giải:
Thay y = 1 vào phương trình đường thẳng d ta được 3x – 5 = 1 ⇔ x = 2
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (2; 1)
Thay x = 2; y = 1 vào hàm số ta được:
Xét phương trình hoành độ giao điểm của d và (P):
Vậy hoành độ giao điểm còn lại là x = 10
Đáp án cần chọn là: D
Câu 15: Cho đồ thị hàm số y = 2x2 (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình 2x2 – m – 5 = 0 có hai nghiệm phân biệt.
A. m < −5
B. m > 0
C. m < 0
D. m > −5
Lời giải:
Ta có 2x2 – m – 5 = 0 (*) ⇔ 2x2 = m + 5
Số nghiệm của phương trình (*) là số giao điểm của parabol (P): y = 2x2 và đường thẳng d: y = m + 5
Để (*) có hai nghiệm phân biệt thì d cắt (P) tại hai điểm phân biệt. Từ đồ thị hàm số ta thấy:
Với m + 5 > 0 ⇔ m > −5 thì d cắt (P) tại hai điểm phân biệt hay phương trình (*) có hai nghiệm phân biệt khi m > −5
Đáp án cần chọn là: D
Câu 16: Cho đồ thị hàm số (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình x2 – 2m + 4 = 0 có hai nghiệm phân biệt.
A. m > 2
B. m > 0
C. m < 2
D. m > −2
Lời giải:
Xét phương trình x2 – 2m + 4 = 0 (*) ⇔ x2 = 2m – 4
Số nghiệm của phương trình (*) là số giao điểm của parabol (P): và đường thẳng d: y = m – 2
Để (*) có hai nghiệm phân biệt thì d cắt (P) tại hai điểm phân biệt
Từ đồ thị hàm số ta thấy:
Với m – 2 > 0 ⇔ m > 2 thì d cắt (P) tại hai điểm phân biệt hay phương trình (*) có hai nghiệm phân biệt khi m > 2
Đáp án cần chọn là: A
Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:
- Trắc nghiệm Hàm số y = ax2 (a ≠ 0) có đáp án
- Trắc nghiệm Phương trình bậc hai một ẩn có đáp án
- Trắc nghiệm Công thức nghiệm thu gọn có đáp án
- Trắc nghiệm Hệ thức Vi-ét và ứng dụng có đáp án
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều