Trắc nghiệm Góc nội tiếp có đáp án - Toán lớp 9
Trắc nghiệm Góc nội tiếp có đáp án
Tài liệu bài tập trắc nghiệm Góc nội tiếp có đáp án Toán lớp 9 chọn lọc, có đáp án với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.
Câu 1: Hình nào dưới đây biểu diễn góc nội tiếp?
A. Hình 1
B. Hình 2
C. Hình 3
D. Hình 4
Lời giải:
Hình 1 góc là góc ở tâm
Hình 3 có 1 cạnh không phải là dây của đường tròn
Hình 4 đỉnh B không nằm trên đường tròn
Hình 2 góc là góc nội tiếp chắn cung AB
Đáp án cần chọn là: B
Câu 2: Góc nội tiếp nhỏ hơn hoặc bằng 90o có số đo:
A. Bằng nửa số đo góc ở tâm cùng chắn một cung
B. Bằng số đo của góc ở tâm cùng chắn một cung
C. Bằng số đo cung bị chắn
D. Bằng nửa số đo cung lớn
Lời giải:
Trong một đường tròn:
Góc nội tiếp (nhỏ hơn hoặc bằng 90o) có số đo bằng nửa số đo góc ở tâm cùng chắn một cung
Đáp án cần chọn là: A
Câu 3: Góc nội tiếp có số đo
A. Bằng hai lần số đo góc ở tâm cùng chắn một cung
B. Bằng số đo góc ở tâm cùng chắn một cung
C. Bằng số đo cung bị chắn
D. Bằng nửa số đo cung bị chắn
Lời giải:
Trong một đường tròn:
Góc nội tiếp có số đo bằng nửa số đo cung bị chắn
Đáp án cần chọn là: D
Câu 4: Khẳng định nào sau đây là sai?
A. Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông.
B. Trong một đường tròn, hai góc nội tiếp bằng nhau chắn hai cung bằng nhau
C. Trong một đường tròn, hai góc nội tiếp cùng chắn một cung thì bằng nhau
D. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung
Lời giải:
Trong một đường tròn
+ Các góc nội tiếp bằng nhau chắn các cung bằng nhau
+ Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau
+ Góc nội tiếp chắn nửa đường tròn là góc vuông
Như vậy hai góc nội tiếp bằng nhau có thể cùng chắn một cung hoặc chắn các cung bằng nhau
Phương án A, B, C đúng và D sai
Đáp án cần chọn là: D
Câu 5: Góc nội tiếp chắn nửa đường tròn bằng bao nhiêu độ?
A. 45o
B. 90o
C. 60o
D. 120o
Lời giải:
Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông
Đáp án cần chọn là: B
Câu 6: Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D). Cặp góc nào sau đây bằng nhau?
Lời giải:
Xét (O) có là góc nội tiếp chắn cung AD (Chứa điểm B); là góc nội tiếp chắn cung AD (chứa điểm C) nên:
Đáp án cần chọn là: A
Thông hiểu: Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D). Tích IA. IB bằng?
A. ID. CD
B. IC. CB
C. IC. CD
D. IC. ID
Lời giải:
Xét (O) có là góc nội tiếp chắn cung AD (Chứa điểm B); là góc nội tiếp chắn cung AD (chứa điểm C) nên
Đáp án cần chọn là: D
Câu 7: Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D) sao cho = 120o. Chọn câu đúng
Lời giải:
Xét (O) có là góc nội tiếp chắn cung BC (chứa điểm D); là góc nội tiếp chắn cung BC (chứa điểm A) nên:
Đáp án cần chọn là: B
Thông hiểu: Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D) sao cho = 120o. Hai tam giác nào sau đây đồng dạng?
A. IAC ~ IDB
B. IAC ~ IBD
C. CAI ~ ACD
D. BAC ~ DBI
Lời giải:
Xét (O) có là góc nội tiếp chắn cung BC (chứa điểm D); là góc nội tiếp chắn cung BC (chứa điểm A) nên:
Đáp án cần chọn là: A
Câu 8: Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Số đo là:
A. 100o
B. 90o
C. 110o
D. 120o
Lời giải:
Xét (O) có là góc nội tiếp chắn nửa đường tròn nên = 90o
Đáp án cần chọn là: B
Vận dụng: Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Góc bằng
Lời giải:
Xét (O) có là góc nội tiếp chắn cung AC và là góc nội tiếp chắn cung CM
Đáp án cần chọn là: B
Vận dụng: Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Gọi N là giao điểm của AH với đường tròn (O). Tứ giác BCMN là hình gì?
A. Hình thang
B. Hình thang vuông
C. Hình thang cân
D. Hình bình hành
Lời giải:
Xét (O) có là góc nội tiếp chắn cung AC và là góc nội tiếp chắn cung CM
Xét (O) có là góc nội tiếp chắn nửa đường tròn nên = 90o hay AN ⊥ NM mà BC ⊥ AN ⇒ NM // BC
Lại có (cmt) nên cung BN = cung CM ⇒ BN = CM
Từ đó tứ giác BNMC có NM // BC; BN = CM nên BNMC là hình thang cân
Đáp án cần chọn là: C
Câu 9: Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Số đo góc là:
A. 90o
B. 80o
C. 110o
D. 120o
Lời giải:
Xét (O) có là góc nội tiếp chắn nửa đường tròn nên = 90o
Đáp án cần chọn là: A
Vận dụng: Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Góc bằng:
Lời giải:
Xét (O) có là góc nội tiếp chắn cung AC và là góc nội tiếp chắn cung CM. Nên:
Lại có số đo cung AC + số đo cung CM = 180o nên:
Lại có ∆OAC cân tại O (do OA = OC = bán kính) nên:
Đáp án cần chọn là: D
Thông hiểu: Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Gọi N là giao điểm của AH với đường tròn (O). Chọn câu sai.
Lời giải:
Xét (O) có là góc nội tiếp chắn cung AC và là góc nội tiếp chắn cung CM. Nên:
Lại có số đo cung AC + số đo cung CM = 180o nên:
Xét (O) có là góc nội tiếp chắn nửa đường tròn nên = 90o hay AN ⊥ NM mà BC ⊥ AN ⇒ NM // BC
Lại có (cmt) nên cung BN = cung CM ⇒ BN = CM
Từ đó tứ giác BNMC có NM // BC; BN = CM nên BNMC là hình thang cân
Suy ra BM = CN (tính chất hình thang cân) nên B sai
Đáp án cần chọn là: B
Câu 10: Cho đường tròn (O) và hai dây cung AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E. Khi đó AB2 bằng
A. AD. AE
B. AD. AC
C. AE. BE
D. AD. BD
Lời giải:
Xét (O) có (hai góc nội tiếp chắn hai cung bằng nhau AB = AC)
Xét ∆ABD và ∆AEB có Â chung và (cmt)
Nên ∆ABD ~ ∆AEB (g − g) AB2 = AE. AD
Đáp án cần chọn là: A
Câu 11: Cho đường tròn (O) và hai dây cung AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E. Khi đó DA. DE bằng
A. DC2
B. DB2
C. DB. DC
D. AB.AC
Lời giải:
Xét (O) có (hai góc nội tiếp chắn hai cung bằng nhau AB = AC)
Xét ∆ADC và ∆BDE có:
Nên ∆ADC ~ ∆BDE (g − g) DA. DE = DB. DC
Đáp án cần chọn là: C
Câu 12: Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Hai đoạn thẳng nào sau đây bằng nhau?
A. BF = FC
B. BH = HC
C. BF = CH
D. BF = BH
Lời giải:
Xét (O) có (góc nội tiếp chắn nửa đường tròn)
Suy ra CF ⊥ AC; BF ⊥ AB mà BD ⊥ AC; CE ⊥ AB ⇒ BD // CF; CE // BF
⇒ BHCF là hình bình hành ⇒ BH = CF; BF = CH
Đáp án cần chọn là: C
Vận dụng: Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Hệ thức nào dưới đây là đúng?
A. EH. EC = EA. EB
B. EH. EC = AE2
C. EH. EC = AE. AF
D. EH. EC = AH2
Lời giải:
Xét hai tam giác vuông EBH và ECA có
Nên ∆EBH ~ ∆ECA (g – g) EB. EA = EC. EH
Đáp án cần chọn là: A
Vận dụng: Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Gọi M là trung điểm BC. Khi đó:
A. AH = 2.OM
B. AH = 3. OM
C. AH = 2.HM
D. AH = 2. FM
Lời giải:
Xét (O) có (góc nội tiếp chắn nửa đường tròn)
Suy ra CF ⊥ AC; BF ⊥ AB mà BD ⊥ AC; CE ⊥ AB ⇒ BD // CF; CE // BF
⇒ BHCF là hình bình hành
Có M là trung điểm của BC nên M cũng là trung điểm của HF
Khi đó OM là đường trung bình của tam giác AHF nên AH = 2. OM
Đáp án cần chọn là: A
Câu 13: Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Chọn câu đúng:
A. BH = BE
B. BH = CF
C. BH = HC
D. HF = BC
Lời giải:
Xét (O) có (góc nội tiếp chắn nửa đường tròn)
Suy ra CF ⊥ AC; BF ⊥ AB mà BD ⊥ AC; CE ⊥ AB ⇒ BD // CF; CE // BF
⇒ BHCF là hình bình hành BH = CF
Đáp án cần chọn là: B
* Chú ý: Một số em chọn đáp án D là sai vì hai đường chéo của hình bình hành không bằng nhau
Vận dụng: Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Tích DA. DC bằng:
A. DH2
B. DH. DC
C. HE. HC
D. HC2
Lời giải:
Xét hai tam giác vuông ∆HDC và ∆ADB có
Nên ∆HDC ~ ∆ADB (g – g) DH. DB = DA. DC
Đáp án cần chọn là: B
Vận dụng: Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Gọi M là trung điểm BC. Chọn câu sai?
Lời giải:
Xét (O) có (góc nội tiếp chắn nửa đường tròn)
Suy ra CF ⊥ AC; BF ⊥ AB mà BD ⊥ AC; CE ⊥ AB ⇒ BD // CF; CE // BF
⇒ BHCF là hình bình hành.
Có M là trung điểm của BC nên M cũng là trung điểm của HF hay HM =
Khi đó OM là đường trung bình của tam giác AHF nên AH // OM
Xét tam giác ABC có BD và CE là hai đường cao cắt nhau tại H nên H là trực tâm tam giác ABC ⇒ AH ⊥ BC mà AH // OM ⇒ OM ⊥ BC
Đáp án D sai vì OM ⊥ BC mà BC cắt BF nên OM không thể vuông với BF
Đáp án cần chọn là: D
Câu 14: Cho (O), đường kính AB, điểm D thuộc đường tròn. Gọi E là điểm đối xứng với A qua D. Tam giác ABE là tam giác gì?
A. ∆BAE cân tại E
B. ∆BAE cân tại A
C. ∆BAE cân tại B
D. ∆BAE đều
Lời giải:
Xét (O) có = 90o (góc nội tiếp chắn nửa đường tròn) nên BD ⊥ EA mà D là trung điểm EA
Nên ∆BEA có BD vừa là đường cao vừa là đường trung tuyến ⇒ ∆BAE cân tại B
Đáp án cần chọn là: C
Vận dụng: Cho (O), đường kính AB, điểm D thuộc đường tròn. Gọi E là điểm đối xứng với A qua D. Gọi K là giao điểm của EB với (O). Chọn khẳng định sai?
A. OD // EB
B. OD ⊥ AK
C. AK ⊥ BE
D. OD ⊥ AE
Lời giải:
Xét (O) có = 90o (góc nội tiếp chắn nửa đường tròn) nên AK ⊥ BE
Mà OD là đường trung bình của tam giác ABE nên OD // EB từ đó OD ⊥ AK
Nên A, B, C đúng
Đáp án cần chọn là: D
Câu 15: Cho (O), đường kính AB, điểm D thuộc đường tròn sao cho = 50o. Gọi E là điểm đối xứng với A qua D. Góc AEB bằng bao nhiêu độ?
A. 50o
B. 60o
C. 45o
D. 70o
Lời giải:
Xét (O) có = 90o (góc nội tiếp chắn nửa đường tròn) nên BD ⊥ EA mà D là trung điểm EA nên ∆BEA có BD vừa là đường cao vừa là đường trung tuyến nên ∆BAE cân tại B
Đáp án cần chọn là: A
Vận dụng: Cho (O), đường kính AB, điểm D thuộc đường tròn sao cho
Lời giải:
Xét (O) có = 90o (góc nội tiếp chắn nửa đường tròn) nên AK ⊥ BE
Mà OD là đường trung bình của tam giác ABE nên OD // EB từ đó BE = 2OD = 2R
Đáp án cần chọn là: A
Câu 16: Cho tam giác ABC có đường cao AH và nội tiếp trong đường tròn tâm (O), đường kính AD. Khi đó tích AB.AC bằng
A. AH. HD
B. AH. AD
C. AH. HB
D. AH2
Lời giải:
Xét (O) có (hai góc nội tiếp cùng chắn cung AB); = 90o (góc nội tiếp chắn nửa đường tròn)
Nên ∆ACH ~ ∆ADB (g – g) AH. AD = AC. AB
Đáp án cần chọn là: B
Câu 17: Cho tam giác ABC có AB = 5cm; AC = 3cm đường cao AH và nội tiếp trong đường tròn tâm (O), đường kính AD. Khi đó tích AH. AD bằng:
A. 15 cm2.
B. 8 cm2.
C. 12 cm2.
D. 30 cm2.
Lời giải:
Xét (O) có (hai góc nội tiếp cùng chắn cung AB); = 90o (góc nội tiếp chắn nửa đường tròn)
Nên ∆ACH ~ ∆ADB (g – g) AH. AD = AC. AB
Suy ra AH. AD = 3.5 = 15cm2
Đáp án cần chọn là: A
Câu 18: Cho tam giác ABC nội tiếp đường tròn (O; R), đường cao AH, biết AB = 9cm, AC = 12cm, AH = 4cm. Tính bán kính của đường tròn (O)
A. 13,5cm
B. 12cm
C. 18cm
D. 6cm
Lời giải:
Kẻ đường kính AD
Xét (O) có (hai góc nội tiếp cùng chắn cung AB); = 90o (góc nội tiếp chắn nửa đường tròn)
Nên ∆ACH ~ ∆ADB (g – g) AH. AD = AC. AB
Đáp án cần chọn là: A
Câu 19: Cho tam giác ABC nội tiếp đường tròn (O; R), đường cao AH, biết AB = 12cm, AC = 15cm, AH = 6cm. Tính đường kính của đường tròn (O)
A. 13,5cm
B. 12cm
C. 15cm
D. 30cm
Lời giải:
Kẻ đường kính AD
Xét (O) có (hai góc nội tiếp cùng chắn cung AB); = 90o (góc nội tiếp chắn nửa đường tròn)
Nên ∆ACH ~ ∆ADB (g – g) AH. AD = AC. AB
Vậy đường kính của đường tròn là 30cm
Đáp án cần chọn là: D
Câu 20: Tam giác ABC nội tiếp đường tròn (O; R) biết góc = 45o và AB = a. Bán kính đường tròn (O) là:
Lời giải:
Xét đường tròn (O) có là góc nội tiếp chắn cung AB
Đáp án cần chọn là: C
Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:
- Trắc nghiệm Góc ở tâm - Số đo cung có đáp án
- Trắc nghiệm Liên hệ giữa cung và dây có đáp án
- Trắc nghiệm Góc tạo bởi tia tiếp tuyến và dây cung có đáp án
- Trắc nghiệm Góc có đỉnh ở bên trong đường tròn. Góc có ngoài ở bên trong đường tròn có đáp án
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều