Giải Toán 9 Bài 1 (sách mới) | Chân trời sáng tạo, Kết nối tri thức, Cánh diều

Với lời giải Toán 9 Bài 1 sách mới Chân trời sáng tạo, Kết nối tri thức, Cánh diều hay, chi tiết giúp học sinh lớp 9 dễ dàng làm bài tập Toán 9 Bài 1.

Giải Toán 9 Bài 1 (sách mới) | Chân trời sáng tạo, Kết nối tri thức, Cánh diều

Quảng cáo

Giải Toán 9 Bài 1 Chân trời sáng tạo

Giải Toán 9 Bài 1 Kết nối tri thức

Giải Toán 9 Bài 1 Cánh diều




Lưu trữ: Giải Toán 9 Bài 1 (sách cũ)

Video Giải bài tập Toán 9 Bài 1: Căn bậc hai - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 4 : Tìm các căn bậc hai của mỗi số sau:

a) 9;        b) 4/9;        c) 0,25;        d) 2.

Lời giải

a) Căn bậc hai của 9 là 3 và -3 (vì 32 = 9 và (-3)2 = 9)

b) Căn bậc hai của 4/9 là 2/3 và (-2)/3 (vì (2/3)2 = 4/9 và(-2/3)2 = 4/9)

c) Căn bậc hai của 0,25 là 0,5 và -0,5 (vì 0,52 = 0,25 và (-0,5)2 = 0,25)

d) Căn bậc hai của 2 là √2 và -√2 (vì (√2)2 = 2 và(-√2)2 = 2 )

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 5 : Tìm căn bậc hai số học của mỗi số sau:

a) 49;        b) 64;        c) 81;        d) 1,21.

Lời giải

a) √49 = 7, vì 7 > 0 và 72 = 49

b) √64 = 8, vì 8 > 0 và 82 = 64

c) √81 = 9, vì 9 > 0 và 92 = 81

d) √1,21 = 1,1 vì 1,1 > 0 và 1,12 = 1,21

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 5 : Tìm căn bậc hai của mỗi số sau:

a) 64;        b) 81;        c) 1,21.

Lời giải

a) Các căn bậc hai của 64 là 8 và -8

b) Các căn bậc hai của 81 là 9 và -9

c) Các căn bậc hai của 1,21 là 1,1 và -1,1

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 6 : So sánh

a) 4 và √15;        b) √11 và 3.

Lời giải

a) 16 > 15 nên √16 > √15. Vậy 4 > √15

b) 11 > 9 nên √11 > √9. Vậy √11 > 3

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 6 : Tìm số x không âm, biết:

a) √x > 1;        b) √x < 3.

Lời giải

a) 1 = √1, nên √x > 1 có nghĩa là √x > √1

Vì x ≥ 0 nên √x > √1 ⇔ x > 1. Vậy x > 1

b) 3 = √9, nên √x < 3 có nghĩa là √x < √9

Vì x ≥ 0 nên √x < √9 ⇔ x < 9. Vậy x < 9

Bài 1 trang 6 SGK Toán lớp 9 Tập 1: Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

        121; 144; 169; 225; 256; 324; 361; 400

Lời giải:

Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên

Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.

Tương tự:

Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.

Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.

Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.

Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.

Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.

Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.

Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.

Bài 2 trang 6 SGK Toán lớp 9 Tập 1: So sánh:

a) 2 và √3 ;     b) 6 và √41 ;     c) 7 và √47

a) 2 = √4

Vì 4 > 3 nên √4 > √3 (định lí)

Vậy 2 > √3

b) 6 = √36

Vì 36 < 41 nên √36 < √41

Vậy 6 < √41

c) 7 = √49

Vì 49 > 47 nên √49 > √47

Vậy 7 > √47

Bài 3 trang 6 SGK Toán lớp 9 Tập 1: Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương tình sau (làm tròn đến chữ số thập phân thứ ba):

a) x2 = 2 ;         b) x2 = 3

c) x2 = 3,5 ;         d) x2 = 4,12

Hướng dẫn: Nghiệm của phương trình x2 = a ( với a ≥ 0) là các căn bậc hai của a.

Lời giải:

a) x2 = 2 => x1 = √2 và x2 = -√2

Dùng máy tính bỏ túi ta tính được:

    √2 ≈ 1,414213562

Kết quả làm tròn đến chữ số thập phân thứ ba là:

x1 = 1,414; x2 = - 1,414

b) x2 = 3 => x1 = √3 và x2 = -√3

Dùng máy tính ta được:

    √3 ≈ 1,732050907

Vậy x1 = 1,732; x2 = - 1,732

c) x2 = 3,5 => x1 = √3,5 và x2 = -√3,5

Dùng máy tính ta được:

    √3,5 ≈ 1,870828693

Vậy x1 = 1,871; x2 = - 1,871

d) x2 = 4,12 => x1 = √4,12 và x2 = -√4,12

Dùng máy tính ta được:

    √4,12 ≈ 2,029778313

Vậy x1 = 2,030 ; x2 = - 2,030

Bài 4 trang 7 SGK Toán lớp 9 Tập 1: Tìm số x không âm, biết:

a) √x = 15;         b) 2√x = 14

c) √x < √2;         d) √2x < 4

Lời giải:

Lưu ý: Vì x không âm (x ≥ 0) nên các căn thức trong bài đều xác định.

a) √x = 15

Vì x ≥ 0 nên bình phương hai vế ta được:

x = 152 ⇔ x = 225

Vậy x = 225

b) 2√x = 14 ⇔ √x = 7

Vì x ≥ 0 nên bình phương hai vế ta được:

x = 72 ⇔ x = 49

Vậy x = 49

c) √x < √2

Vì x ≥ 0 nên bình phương hai vế ta được: x < 2

Vậy 0 ≤ x < 2

<

d) Video Giải bài tập Toán lớp 9 hay, chi tiết

Vì x ≥ 0 nên bình phương hai vế ta được:

2x < 16 ⇔ x < 8

Vậy 0 ≤ x < 8

Bài 5 trang 7 SGK Toán lớp 9 Tập 1: Đố. Tính cạnh một hình vuông, biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3,5m và chiều dài 14m.

Video Giải bài tập Toán lớp 9 hay, chi tiết

Hình 1

Lời giải:

Diện tích hình chữ nhật: SHCN = 3,5.14 = 49 (m2)

Gọi a (m) (a > 0) là độ dài của cạnh hình vuông. Suy ra diện tích hình vuông là

SHV = a2 = 49 (m2)

=> a = 7 (m)

Vậy cạnh hình vuông có độ dài là 7m.

Ghi chú: Nếu ta cắt đôi hình chữ nhật thành hai hình chữ nhật có kích thước 3,5m x 7m thì ta sẽ ghép được hình vuông có cạnh là 7m.

Xem thêm các bài Giải bài tập Toán lớp 9 hay và chi tiết khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Video Giải bài tập Toán lớp 9 hay, chi tiết của chúng tôi được các Thầy / Cô giáo biên soạn bám sát chương trình sách giáo khoa Toán 9 Tập 1, Tập 2 Đại số & Hình học.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên