Bài 2.23 trang 61 Sách bài tập Hình học 12



Bài 2: Mặt cầu

Bài 2.23 trang 61 Sách bài tập Hình học 12: Cho hình cầu đường kính AA’ = 2r. Gọi H là một điểm trên đoạn AA’ sao cho AH = 4r/3. Mặt phẳng (α) qua H và vuông góc với AA’ cắt hình cầu theo đường tròn (C).

a) Tính diện tích của hình tròn (C) .

b) Gọi BCD là tam giác đều nội tiếp trong (C), hãy tính thể tích hình chóp A.BCD và hình chóp A’.BCD.

Lời giải:

Quảng cáo

a) Theo giả thiết ta có AH = 4r/3

Ta suy ra OH = r/3. Gọi r’ là bán kính của đường tròn (C).

Ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy diện tích của hình tròn (C) là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

b) Vì BCD là tam giác đều nên ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Diện tích của tam giác đều BCD là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Thể tích hình chóp A.BCD là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Hai hình chóp A.BCD và A’.BCD có chung mặt đáy BCD nên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải SBT Toán 12
Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


bai-2-mat-cau.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên