Bài 2.7 trang 47 Sách bài tập Hình học 12



Bài 1: Khái niệm về mặt tròn xoay

Bài 2.7 trang 47 Sách bài tập Hình học 12: Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc ∠ABM = ∠BMH. Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ xoay có trục là AB.

Lời giải:

Quảng cáo
Giải sách bài tập Toán 12 | Giải SBT Toán 12

Giải sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho. Gọi I là hình chiếu vuông góc của M trên AB. Hai tam giác vuông BIM và MHB bằng nhau vì có cạnh huyền chung và một cặp góc nhọn bằng nhau. Do đó MI = BH không đổi. Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.

Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


bai-1-khai-niem-ve-mat-tron-xoay.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên