Bài 5.4 trang 45 SBT Toán 7 Tập 2



Bài 5: Tính chất tia phân giác của một góc

Bài 5.4 trang 45 sách bài tập Toán 7 Tập 2: Cho tam giác cân ABC, AB = AC. Trên các cạnh AB, AC lần lượt lấy hai điểm P, Q sao cho AP = AQ. Hai đoạn thẳng CP, BQ cắt nhau tại O. Chứng minh rằng:

Quảng cáo

a) Tam giác OBC là tam giác cân.

b) Điểm O cách đều hai cạnh AB, AC.

c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

Quảng cáo

a) Ta sẽ chứng minh ΔOBC có hai góc OBC và OCB bằng nhau

ΔABQ và ΔACP có: AB = AC, AQ = AP, ∠A chung

⇒ ΔABQ = ΔACP (c.g.c)

⇒ ∠ABQ = ∠ACP.

Mà ∠ABC = ∠ACB

⇒ ∠ABC - ∠ABQ = ∠ACB - ∠ACP hay ∠OBC = ∠OCB

⇒ ΔOBC cân tại O.

b) ΔOBC cân tại O ⇒ OB = OC.

ΔAOB và ΔAOC có: AO chung, AB = AC (giả thiết), OB = OC (cmt)

⇒ ΔAOB = ΔAOC (c.c.c).

⇒ ∠BAO = ∠CAO

⇒ AO là tia phân giác của góc BAC

⇒ O cách đều hai cạnh AB, AC.

c) Gọi giao điểm AO với BC là H.

ΔAHB và ΔAHC có:

cạnh AH chung,

AB = AC

∠(BAH) = ∠(CAH) (theo b).

⇒ ΔAHB = ΔAHC (c.g.c)

⇒ HB = HC và ∠(AHB) = ∠(AHC) = 90o,

tức là AO ⊥ BC và AO đi qua trung điểm của BC.

Các bài giải bài tập sách bài tập Toán 7 (SBT Toán 7) khác:

Quảng cáo

Mục lục Giải sách bài tập Toán 7 (SBT Toán 7) theo chương:

Loạt bài Giải sách bài tập Toán 7 | Giải sbt Toán 7 của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-5-tinh-chat-tia-phan-giac-cua-mot-goc.jsp