Bài 50 trang 60 SBT Toán 9 Tập 2



Bài 7: Phương trình quy về phương trình bậc hai

Bài 50 trang 60 Sách bài tập Toán 9 Tập 2: Giải các phương trình sau bằng cách đặt ẩn số phụ

Quảng cáo

a.(4x -5)2 – 6(4x -5) +8 =0

b.(x2 +3x -1)2 +2(x2 +3x -1) -8 =0

c. (2x2 +x -2)2 +10x2 +5x -16 =0

d.(x2 -3x +4)(x2 -3x +2) =3

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải:

a) Đặt m =4x -5

Ta có: (4x -5)2– 6(4x -5) +8 =0 ⇔ m2 -6m +8 =0

Quảng cáo

Δ’ = (-3)2 -1.8 =9 -8=1 > 0

√Δ' = √1 = 1

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 2 nghiệm x1 =9/4 ,x2 =7/4

b) Đặt m = x2 +3x -1

Ta có: (x2 +3x -1)2 +2(x2 +3x -1) -8 =0 ⇔ m2 +2m -8 =0

Quảng cáo

Δ’ = 12 -1.(-8) =1 +8 =9 > 0

√Δ' =√9 =3

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với m = 2 thì : x2 +3x - 1 = 2 ⇔ x2 + 3x - 3 = 0

Δ’ = 32 -4.1.(-3 )=9 +12=21 > 0

√Δ =√21

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với m = -4 ta có: x2 +3x -1 = -4 ⇔ x2 +3x +3 = 0

Δ = 32 -4.1.3=9 -12 = -3 < 0

Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

c) Đặt m = 2x2 +x -2

Ta có: (2x2 +x -2)2+10x2 +5x -16 =0

⇔ (2x2 +x -2)2+5(2x2 +x -2) -6 =0

⇔ m2 +5m -6 =0

Phương trình m2 +5m -6 = 0 có hệ số a = 1, b = 5, c = -6 nên có dạng

a + b + c = 0

Suy ra : m1 =1 ,m2 =-6

m1 =1 ta có: 2x2 +x -2 =1 ⇔ 2x2 +x -3=0

Phương trình 2x2 +x -3 = 0 có hệ số a = 2, b = 1 , c = -3 nên có dạng

a +b+c=0

Suy ra: x1 =1 ,x2 =-3/2

Với m=-6 ta có: 2x2 +x -2 = -6 ⇔ 2x2 +x +4 =0

Δ = 12 -4.2.4 = 1 -32 = -31 < 0 . Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm : x1 =1 ,x2 =-32

d) Đặt m= x2 -3x +2

Ta có: (x2 -3x +4)(x2 -3x +2) =3

⇔ [(x2 -3x +2 +2)(x2 -3x +2) -3 =0

⇔ (x2 -3x +2)2 +2(x2 -3x +2) -3 =0

⇔ m2 +2m -3 =0

Phương trình m2 +2m -3 = 0 có hệ số a = 1, b = 2 , c = -3 nên có dạng

a +b+c=0

suy ra : m1 =1 ,m2 =-3

Với m1 =1 ta có: x2 -3x +2 =1 ⇔ x2 -3x +1=0

Δ = (-3)2 -4.1.1 = 9 -4 =5 > 0

√Δ = √5

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với m2 =-3 ta có: x2 -3x +2 =-3 ⇔ x2 -3x +5=0

Δ = (-3)2 -4.1.5 = 9 -20 =-11 < 0.Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

e. Đặt m= x/(x+1) .Điều kiện : x ≠ -1

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

⇔ 2m2 -5m +3 =0

Phương trình 2m2 -5m +3 = 0 có hệ số a = 2, b = -5 , c = 3 nên có dạng

a +b + c = 0

suy ra : m1 = 1 ,m2 =3/2

Với m1 =1 ta có: x/(x+1) =1 ⇔ x =x+1 ⇔ 0x =1 (vô nghiệm)

Với m = 3/2 ta có: x/(x+1) = 3/2 ⇔ 2x =3(x +1)

⇔ 2x =3x +3 ⇔ x =-3

Giá trị của x thỏa mãn điều kiện bài toán

Vậy phương trình đã cho có 1 nghiệm : x=-3

f. Đặt m = √(x -1) .Điều kiện : m ≥ 0, x ≥ 1

Ta có : x - √(x -1)-3 =0 ⇔ (x -1) -√(x -1) -2 =0

⇔ m2 -m - 2 =0

Phương trình m2 -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng

a – b + c = 0

Suy ra : m1 = -1 (loại) , m2 = -(-2)/1 = 2

Với m =2 ta có:√(x -1) =2 ⇒ x -1 =4 ⇔ x =5

Giá trị của x thỏa mãn điều kiện bài toán

Vậy phương trình đã cho có 1 nghiệm : x=5

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sách bài tập Toán 9 | Giải sbt Toán 9 của chúng tôi được biên soạn bám sát nội dung Sách bài tập Toán 9 Tập 1 và Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-7-phuong-trinh-quy-ve-phuong-trinh-bac-hai.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên