Sách bài tập Toán 9 Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Sách bài tập Toán 9 Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 25 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Lời giải:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Bài 26 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Lời giải:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Bài 27 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Lời giải:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vì phương trình 0x – 0y = 39 vô nghiệm nên hệ phương trình đã cho vô nghiệm.

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vì phương trình 0x – 0y = 20 vô nghiệm nên hệ phương trình đã cho vô nghiệm.

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vậy hệ phương trình đã cho có nghiệm (s; t) = (3;2)

Bài 28 trang 11 Sách bài tập Toán 9 Tập 2: Tìm hai số a và b sao cho 5a – 4b = -5 và đường thẳng: ax + by = -1 đi qua điểm A(-7; 4).

Lời giải:

Đường thẳng ax + by = -1 đi qua điểm A(-7; 4) nên tọa độ của A nghiệm đúng phương trình đường thẳng.

Ta có: a.(-7) + b.4 = -1

Khi đó ta có phương trình: Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vậy a = 3, b = 5.

Bài 29 trang 11 Sách bài tập Toán 9 Tập 2: Tìm giá trị của a và b để đường thẳng ax – by = 4 đi qua hai điểm A(4; 3), B(-6; -7)

Lời giải:

Đường thẳng ax – by = 4 đi qua hai điểm A(4; 3), B(-6; -7) nên tọa độ của A và B nghiệm đúng phương trình đường thẳng.

*Với điểm A: 4a – 3b = 4

*Với điểm B: -6a + 7b = 4

Hai số a và b là nghiệm của hệ phương trình:Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vậy a = 4, b = 4.

Bài 30 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình theo hai cách:

*Cách thứ nhất: đưa hệ phương trình về dạng: Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

*Cách thứ hai: đặt ẩn phụ, chẳng hạn s = 3x – 2, t = 3y + 2

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Lời giải:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )

*Cách 2: Đặt m = 3x – 2, n = 3y + 2

Ta có hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Ta có: 3x – 2 = 9/17 ⇔ 3x = 2 + 9/17 ⇔ 3x = 43/17 ⇔ x = 43/51

3y + 2 = - 10/17 ⇔ 3y = -2 - 10/17 ⇔ 3y = - 44/17 ⇔ y = - 44/51

Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vậy hệ phương trình có nghiệm (x;y) = (1; -2)

*Cách 2: Đặt m = x + y, n = x – y

Ta có hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vậy hệ phương trình có nghiệm (x;y) = (1; -2)

Bài 31 trang 12 Sách bài tập Toán 9 Tập 2: Tìm giá trị của m để nghiệm của hệ phương trình

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

cũng là nghiệm của phương trình 3mx – 5y = 2m + 1.

Lời giải:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vì (x; y) = (11; 6) là nghiệm của phương trình 3mx – 5y = 2m +1 nên ta có:

3m.11 – 5.6 = 2m + 1

⇔ 33m – 30 = 2m + 1 ⇔ 31m = 31 ⇔ m = 1

Vậy với m = 1 thì nghiệm của Giải sách bài tập Toán lớp 9 hay nhất, chi tiết cũng là nghiệm của phương trình 3mx – 5y = 2m + 1.

Bài 32 trang 12 Sách bài tập Toán 9 Tập 2: Tìm giá trị của m để đường thẳng (d): y = (2m – 5)x – 5m đi qua giao điểm của hai đường thẳng (d1): 2x + 3y = 7 và (d2): 3x + 2y = 13

Lời giải:

Gọi I là giao điểm của (d1) và (d2). Khi đó tọa độ của I là nghiệm của hệ phương trình: Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Tọa độ điểm I là I(5; -1)

Đường thẳng (d): y = (2m – 5)x – 5m đi qua I(5; -1) nên tọa độ của I nghiệm đúng phương trình đường thẳng:

Ta có: -1 = (2m – 5).5 – 5m ⇔ -1 = 10m – 25 – 5m

⇔ 5m = 24 ⇔ m = 24/5

Vậy với m = 24/5 thì đường thẳng (d) đi qua giao điểm của hai đường thẳng (d1) và (d2).

Bài 33 trang 12 Sách bài tập Toán 9 Tập 2: Tìm giá trị của m để ba đường thẳng sau đây đồng quy: (d1): 5x + 11y = 8, (d2): 10x – 7y = 74, (d3): 4mx + (2m – 1)y = m + 2

Lời giải:

Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Tọa độ giao điểm của (d1) và (d2) là (x; y) = (6; -2)

Để ba đường thẳng (d1), (d2), (d3) đồng quy thì (d3) phải đi qua giao điểm của (d1) và (d2), nghĩa là (x; y) = (6; -2) nghiệm đúng phương trình đường thẳng (d3).

Khi đó ta có: 4m.6 + (2m – 1).(-2) = m + 2

⇔ 24m – 4m + 2 = m + 2 ⇔ 19m = 0 ⇔ m = 0

Vậy với m = 0 thì 3 đường thẳng (d1), (d2), (d3) đồng quy.

Bài 34 trang 12 Sách bài tập Toán 9 Tập 2: Nghiệm chung của ba phương trình đã cho được gọi là nghiệm của hệ gồm ba phương trình ấy. Giải hệ phương trình là tìm nghiệm chung của tất cả các phương trình trong hệ. Hãy giải các hệ phương trình sau:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Lời giải:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Thay x = 3, y = 5 vào vế trái của phương trình (3) ta được:

VT = 5.3 – 2.5 = 15 – 10 = 5 = VP

Vậy (x; y) = (3; 5) là nghiệm của phương trình (3).

Hệ phương trình đã cho có nghiệm (x; ) = (3; 5)

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Thay x = -3, y = 31/5 vào vế trái của phương trình (2), ta được:

VT = -3.(-3) + 2.31/5 = 9 + 62/5 = 107/5 ≠ 22 = VP

Vậy (x; y) = (-3; 31/5 ) không phải là nghiệm của phương trình (2).

Hệ phương trình đã cho vô nghiệm.

Bài 1 trang 12 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Lời giải:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết Giải sách bài tập Toán lớp 9 hay nhất, chi tiết Giải sách bài tập Toán lớp 9 hay nhất, chi tiết Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Hai giá trị x = 2; y = -2 thỏa mãn điều kiện bài toán.

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (2; -2)

Bài 2 trang 12 Sách bài tập Toán 9 Tập 2: Hãy xác định hàm số bậc nhất thỏa mãn mỗi điều kiện sau:

a) Đồ thị hàm số đi qua hai điểm M(-3; 1) và N(1; 2)

b) Đồ thị hàm số đi qua hai điểm M(√2 ; 1) và N(3; 3√2 - 1)

c) Đồ thị đi qua điểm M(-2; 9) và cắt đường thẳng (d): 3x – 5y = 1 tại điểm có hoành độ bằng 2.

Lời giải:

Hàm số bậc nhất có dạng y = ax + b (a ≠ 0)

a) Đồ thị hàm số y = ax + b đi qua M(-3; 1) và N(1; 2) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Điểm M: 1 = -3a + b

Điểm N: 2 = a + b

Hai số a và b là nghiệm của hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

b) Đồ thị hàm số y = ax + b đi qua M(√2 ; 1) và N(3; 3√2 - 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Hai số a và b là nghiệm của hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

c) Điểm N nằm trên đường thẳng (d): 3x – 5y = 1 có hoành độ bằng 2 nên tung độ của N bằng: 3.2 - 5y = 1 ⇔ -5y = -5 ⇔ y = 1

Điểm N( 2; 1)

Đồ thị hàm số y = ax + b đi qua M(-2; 9) và N(2; 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Điểm M: 9 = -2a + b

Điểm N: 1 =2a + b

Hai số a và b là nghiệm của hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Bài 3 trang 13 Sách bài tập Toán 9 Tập 2: Giải hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Lời giải:

Điều kiện: x ≠ -y; y ≠ -z; z ≠ -x

Từ hệ phương trình đã cho suy ra: x ≠ 0; y ≠ 0; z ≠ 0

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Ta có hệ phương trình:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Cộng từng vế ba phương trình ta có:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Suy ra:

Giải sách bài tập Toán lớp 9 hay nhất, chi tiết

Vậy hệ phương trình đã cho có một nghiệm (x; y; z) = (1; 2; 3).

Xem thêm Video Giải sách bài tập Toán lớp 9 (SBT Toán 9) hay và chi tiết khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sách bài tập Toán 9 hay, chi tiết của chúng tôi được biên soạn bám sát nội dung Sách bài tập Toán 9 Tập 1 & Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên