Top 100 Đề thi Toán lớp 9 năm 2021 - 2022 học kì 1, học kì 2 có đáp án



Top 100 Đề thi Toán lớp 9 năm 2021 - 2022 học kì 1, học kì 2 có đáp án

Bộ 100 Đề thi Toán lớp 9 năm học 2021 - 2022 Học kì 1 và Học kì 2 gồm đề thi giữa kì, đề thi học kì chọn lọc, có đáp án, cực sát đề thi chính thức bám sát hình thức đánh giá năng lực học sinh mới nhất theo Thông tư 22 của Bộ Giáo dục & Đào tạo. Hi vọng bộ đề thi này sẽ giúp Giáo viên có thêm tài liệu đánh giá học sinh, giúp học sinh ôn luyện & đạt điểm cao trong các bài thi Toán lớp 9.

Bộ đề thi Toán lớp 9 này được tổng hợp, chọn lọc từ đề thi của các trường THCS trên cả được và được đội ngũ Giáo viên biên soạn lời giải chi tiết giúp học sinh dễ dàng rèn luyện, đánh giá năng lực của chính mình. Để xem chi tiết, mời quí bạn đọc lựa chọn một trong các bộ đề thi dưới đây:

Đề thi Toán lớp 9 năm 2021 - 2022 (100 đề)




Phòng Giáo dục và Đào tạo .....

Đề thi Giữa học kì 1

Năm học 2021 - 2022

Môn: Toán lớp 9

Thời gian làm bài: phút

(Đề thi số 1)

Bài 1: (1,0 đ) : Tìm điều kiện của x để các căn thức sau có nghĩa.

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

Bài 2 : (2,0 đ) Tính :

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

Bài 3 : (1,0 đ) Cho biểu thức [Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

a)Rút gọn A.

b)Tìm x để A = 6

Bài 4 : (2,0 đ): Cho biểu thức [Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

a) Rút gọn biểu thức M

b) Tính giá trị của M khi [Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

c) Tìm giá trị của x để M > 0

Bài 5 (3,0 đ): Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn : BH = 4 cm và HC = 6 cm.

a) Tính độ dài các đoạn AH, AB, AC.

b) Gọi M là trung điểm của AC. Tính số đo góc AMB (làm tròn đến độ).

c) Kẻ AK vuông góc với BM (K thuộc BM). Chứng minh : BK.BM = BH.BC

Bài 6 (1,0đ): Giải phương trình sau.

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

ĐÁP ÁN


Bài


Nội dung

Điểm

1

(1,0 đ)

1a

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0.5

1b

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,5

2

(2,0 đ)

2a

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,5

2b

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,5

2c

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0.5

2d

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,5

3

(1,0 đ)

3a

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,5

3b

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,5

4

(2,0 đ)

4a

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,5

0,5

4b)

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)


0,5

4c)

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)



0,5

5

(3,0 đ)


[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

0,25



5a

Tam giác ABC vuông tại A nên :

AH2 = HB.HC = 4.6 = 24 => AH = 2√6 (cm)

AB2 = BC.HB = 10.4 = 40 => AB = 2√10 (cm)

AC2 = BC.HC = 10.6 = 60 => AC = 2√15 (cm)


0,5

0,75

5b

ABM vuông tại A

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)


0,5

0,25


5c

Δ ABM vuông tại A có AK ⊥ BM => AB2 = BK.BM

ΔABC vuông tại A có AH ⊥ BM => AB2 = BH.BC

=> BK.BM = BH.BC

0,25

0,25

0,25

6

(1,0 đ)


[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

[Năm 2021] Đề thi Giữa kì 1 Toán lớp 9 có đáp án (10 đề)

KL: Phương trình có nghiệm:x = 2001, y = 2002, z = 2003


0,25




0,25

0,25

0,25

Phòng Giáo dục và Đào tạo .....

Đề thi Học kì 1

Năm học 2021 - 2022

Môn: Toán lớp 9

Thời gian làm bài: phút

(Đề thi số 1)

Bài 1: (1.5 điểm) Thực hiện các phép tính:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Bài 2: (1.5 điểm) Cho hàm số y = 2x + 3 có đồ thị (d1) và hàm số y = – x có đồ thị (d2).

a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ.

b) Tìm tọa độ giao điểm của (d1) và (d2) bằng phép toán.

Bài 3: (1.5 điểm) Cho biểu thức:

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Thu gọn biểu thức A.

b) Tìm giá trị nhỏ nhất của A.

Bài 4: (2 điểm) Giải các phương trình:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Bài 5: (3.5 điểm) Cho đường tròn (O;R) và điểm M thuộc đường tròn (O). Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại A và B và cắt OM tại H.

a) Chứng minh H là trung điểm của AB và tam giác OMA đều.

b) Chứng minh tứ giác OAMB là hình thoi.

c) Tiếp tuyến tại A của (O) cắt tia OM tại C. Chứng minh CB = CA.

d) Đường thẳng vuông góc với OA tại O cắt BC tại N. Chứng minh MN là tiếp tuyến của đường tròn (O).

Đáp án và Hướng dẫn giải

Bài 1: (1.5 điểm)

Đề kiểm tra Toán 9 | Đề thi Toán 9

= (√5 + 1)2 (3 - √5)

= (6 + 2√5)(3 - √5)

= 2(3 + √5) (3 - √5)

= 8

Bài 2: (1.5 điểm)

a) Tập xác định R

Bảng giá trị:

x 0 -1
y = 2x + 3 3 1
x 0 -1
y = - x 0 1
Đề kiểm tra Toán 9 | Đề thi Toán 9

Gọi (xo; yo ) là tọa độ giao điểm của d1 và d2

Khi đó ta có:

(yo = 2xo + 3 và yo = -xo

⇒ -xo = 2xo + 3 ⇔ 3xo = -3 ⇔ xo = -1

⇒ yo = -xo = 1

Vậy tọa độ giao điểm của d1 và d2 là (- 1; 1)

Bài 3: (1.5 điểm)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy GTNN của biểu thức A là 0, đạt được khi x = 0

Bài 4: (2 điểm)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Bài 5: (3.5 điểm)

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Chứng minh H là trung điểm của AB

Ta có OM vuông góc AB tại H (gt)

Vậy H là trung điểm của AB (đường kính vuông góc với một dây cung)

Chứng minh tam giác OAM đều:

Ta có: AM = AO (A là trung trực của OM)

và OA = OM = R

Suy ra AM = AO = OM

Vậy ΔOAM đều.

b) Chứng minh tứ giác OAMB là hình thoi.

Do H là trung điểm của AB (cmt)

H là trung điểm của OM

nên tứ giác OAMB là hình bình hành mà OM vuông góc AB.

Vậy tứ giác OAMB là hình thoi.

c) Xét ΔOAC và ΔOBC có:

OA = OB = R

∠(AOC) = ∠(BOC) (tính chất đường chéo hình thoi)

OC là cạnh chung

⇒ ΔOAC = ΔOBC (c.g.c)

⇒ AC = BC

d) Ta có: CA ⊥ OA (CA là tiếp tuyến của (O)

và ON ⊥ OA (gt)

⇒ CA // ON ⇒ ∠(CON) = ∠(ACO) (sole trong)

Mà ∠(ACO) = ∠(BCO) (ΔOAC = ΔOBC)

⇒ ∠(CON) = ∠(BCO) ⇒ ΔNCO cân tại N

Xét tam giác CAO vuông tại A có ∠(AOC) = 60o( ΔAMO đều) nên:

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ M là trung điểm của OC

ΔNCO cân tại N có NM là trung tuyến ⇒ NM cũng là đường cao

Hay NM là tiếp tuyến của (O)

Phòng Giáo dục và Đào tạo .....

Đề thi Giữa học kì 2

Năm học 2021 - 2022

Môn: Toán lớp 9

Thời gian làm bài: phút

(Đề thi số 1)

Bài 1 (2 điểm) Giải các hệ phương trình sau:

a. Đề kiểm tra lớp 9 kì 2 đề 3 b. Đề kiểm tra lớp 9 kì 2 đề 3

Bài 2 (2 điểm) Gải bài toán bằng cách lập phương trình hoặc hệ phương trình’

Hai tổ sản xuất trong tháng thứ nhất làm được 1000 sản phẩm. Sang tháng thứ hai, do cải tiến kĩ thuật nên tổ một vượt mức 20%, tổ hai vượt mức 15% so với tháng thứ nhất. Vì vậy, cả hai tổ sản xuất được 1170 sản phẩm. Hỏi tháng thứ nhất, mỗi tổ sản xuất được bao nhiêu sản phẩm?

Bài 3 (2 điểm)

Cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b biết (d) song song với đường thẳng (d’) có phương trình: y = -3x + 5 và đi qua điểm A thuộc Parabol (P) có phương trình y = x2 có hoành độ bằng – 2.

Bài 4 (3,5 điểm) Cho đường tròn (O; R), kẻ đường kính AB. Điểm M bất kì trên (O) sao cho Đề kiểm tra lớp 9 kì 2 đề 3. Từ M kẻ Đề kiểm tra lớp 9 kì 2 đề 3tại H. Vẽ đường tròn (I) đường kính MH cắt MA, MB lần lượt tại E và F.

a. Chứng minh: Đề kiểm tra lớp 9 kì 2 đề 3 và ba điểm E, I, F thẳng hàng.

b. Kẻ đường kính MD của đường tròn (O), MD cắt đường tròn (I) tại điểm thứ hai là N Đề kiểm tra lớp 9 kì 2 đề 3. Chứng minh tứ giác BONF nội tiếp.

c. MD cắt EF tại K. Chứng minh Đề kiểm tra lớp 9 kì 2 đề 3

d. Đường tròn (I) cắt đường tròn (O) tại điểm thứ hai là P Đề kiểm tra lớp 9 kì 2 đề 3. Chứng minh ba đường thẳng MP, FE và BA đồng quy.

Bài 5 (0,5 điểm) Cho các số không âm x, y, z thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức Đề kiểm tra lớp 9 kì 2 đề 3

Đáp án và hướng dẫn giải

Câu 1:

a. Ta có:

Đề kiểm tra lớp 9 kì 2 đề 3

vậy nghiệm của hệ phương trình là Đề kiểm tra lớp 9 kì 2 đề 3

b. Điều kiện Đề kiểm tra lớp 9 kì 2 đề 3

Ta có:

Đề kiểm tra lớp 9 kì 2 đề 3

Vậy nghiệm của hệ phương trình là: (x; y) = (100;0)

Câu 2:

Gọi số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là x, y (sản phẩm) điều kiện: Đề kiểm tra lớp 9 kì 2 đề 3

Lập luận đưa về hệ phương trình: Đề kiểm tra lớp 9 kì 2 đề 3

Câu 3:

Điểm A thuộc y = x2 có hoành độ x = -2 ⇒ y = (-2)2 = 4 ⇒ A(-2;4)

Vì đường thẳng Đề kiểm tra lớp 9 kì 2 đề 3

Vì đường thẳng (d) qua A (-2; 4) nên: -3.(-2) + b = 4 ⇒ b = -2(tm) ⇒ (d) : y = -3x - 2

Câu 4:

Đề kiểm tra lớp 9 kì 2 đề 3

a. Chứng minh: Đề kiểm tra lớp 9 kì 2 đề 3 và ba điểm E, I, F thẳng hàng.

Ta có: Đề kiểm tra lớp 9 kì 2 đề 3(góc nội tiếp chắn nửa đường tròn tâm O) và Đề kiểm tra lớp 9 kì 2 đề 3(góc nội tiếp chắn nửa đường tròn tâm I)

Suy ra tam giác MHB vuông tại H, đường cao HF

Vậy Đề kiểm tra lớp 9 kì 2 đề 3(hệ thức lượng trong tam giác vuông)

b. Kẻ đường kính MD của đường tròn (O), MD cắt đường tròn (I) tại điểm thứ hai là N Đề kiểm tra lớp 9 kì 2 đề 3 . Chứng minh tứ giác BONF nội tiếp.

Ta có: Đề kiểm tra lớp 9 kì 2 đề 3(góc nội tiếp chắn nửa đường tròn tâm I)

Suy ra Đề kiểm tra lớp 9 kì 2 đề 3(cùng phụ góc Đề kiểm tra lớp 9 kì 2 đề 3)

Đề kiểm tra lớp 9 kì 2 đề 3(do tứ giác MHNF nội tiếp)

Nên Đề kiểm tra lớp 9 kì 2 đề 3

Mặt khác ta có: Đề kiểm tra lớp 9 kì 2 đề 3 (kề bù) nên Đề kiểm tra lớp 9 kì 2 đề 3

Vậy tứ giác BONF nội tiếp (tứ giác có tổng hai góc đối bằng 180°)

c. MD cắt EF tại K. Chứng minh Đề kiểm tra lớp 9 kì 2 đề 3

Ta có: Đề kiểm tra lớp 9 kì 2 đề 3(góc nội tiếp chắn nửa đường tròn)

Chứng minh tương tự câu a, ta được tam giác AMH vuông tại H, đường cao HE.

Khi đó: Đề kiểm tra lớp 9 kì 2 đề 3(câu a) nên tam giác MAB đồng dạng tam giác MFE

Suy ra Đề kiểm tra lớp 9 kì 2 đề 3(hai góc tương ứng bằng nhau)

Mặt khác ta có: Đề kiểm tra lớp 9 kì 2 đề 3

Đề kiểm tra lớp 9 kì 2 đề 3

Ta có tam giác MKF đồng dạng với tam giác MBD (g.g)

Suy ra Đề kiểm tra lớp 9 kì 2 đề 3 (câu a)

Nên Đề kiểm tra lớp 9 kì 2 đề 3

Khi đó tam giác MHK đồng dạng với tam giác MDH (c.g.c)

Vậy Đề kiểm tra lớp 9 kì 2 đề 3(hai góc tương ứng)

d. Đường tròn (I) cắt đường tròn (O) tại điểm thứ hai là P Đề kiểm tra lớp 9 kì 2 đề 3. Chứng minh ba đường thẳng MP, FE và BA đồng quy.

Gọi Q là giao điểm của PM và AB.

Xét tam giác MQO có:

MH là đường cao

OI là đường cao (vì OI là đường nối tâm của hai đường tròn)

MH cắt OI tại I

Suy ra I là trực tâm tam giác MQO

Nên Đề kiểm tra lớp 9 kì 2 đề 3

Mặt khác Đề kiểm tra lớp 9 kì 2 đề 32 điểm Q, E, F thẳng hàng

Vậy ba đường thẳng MP, EF và BA đồng quy.

Câu 5:

Các em chứng minh bất đẳng thức: Đề kiểm tra lớp 9 kì 2 đề 3

(chứng minh bằng cách khai triển rồi đưa về dạng Đề kiểm tra lớp 9 kì 2 đề 3)

Áp dụng:

Đề kiểm tra lớp 9 kì 2 đề 3

Phòng Giáo dục và Đào tạo .....

Đề thi Học kì 2

Năm học 2021 - 2022

Môn: Toán lớp 9

Thời gian làm bài: phút

(Đề thi số 1)

Câu 1: Cho hàm số y = -3x2. Kết luận nào sau đây là đúng :

A. Hàm số trên luôn đồng biến

B. Hàm số trên luôn nghịch biến

C. Hàm số trên đồng biến khi x > 0, nghịch biến khi x < 0

D. Hàm số trên đồng biến khi x < 0, nghịch biến khi x > 0

Câu 2: Cho phương trình bậc hai x2 – 2(m + 1) x + 4m = 0. Phương trình có nghiệm kép khi m bằng:

A. 1       C. Với mọi m

B. –1       D. Một kết quả khác

Câu 3: Cung AB của đường tròn (O; R) có số đo là 60o. Khi đó diện tích hình quạt AOB là:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Câu 4: Tứ giác MNPQ nội tiếp đường tròn khi:

A.∠(MNP) + ∠(NPQ) = 180o

B.∠(MNP) = ∠(MPQ)

C. MNPQ là hình thang cân

D. MNPQ là hình thoi

Phần tự luận (8 điểm)

Bài 1 (2,0 điểm)

1) Tìm điều kiện xác định của biểu thức Đề kiểm tra Toán 9 | Đề thi Toán 9

2) Cho biểu thức Đề kiểm tra Toán 9 | Đề thi Toán 9 với x > 0; x ≠ 1

a) Rút gọn biểu thức B

b) Tìm giá trị nhỏ nhất của P = A.B với x > 1

Bài 2 (1,5 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Một tấm bìa hình chữ nhật có chiều dài hơn chiều rộng 3dm. Nếu giảm chiều rộng đi 1dm và tăng chiều dài thêm 1dm thì diện tích tấm bìa là 66 Tính chiều rộng và chiều dài của tấm bìa lúc ban đầu.

Bài 3 (2,0 điểm)

1) Cho phương trình x4 + mx2 - m - 1 = 0(m là tham số)

a) Giải phương trình khi m = 2

b) Tìm giá trị của m để phương trình có 4 nghiệm phân biệt.

2) Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng (d): y = 2x + m (m là tham số).

a) Xác định m để đường thẳng (d) tiếp xúc với parabol (P). Tìm hoành độ tiếp điểm.

b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, sao cho diện tích có diện tích gấp hai lần diện tích (M là giao điểm của đường thẳng d với trục tung).

Bài 4 (3,5 điểm) Cho đường tròn (O; R), dây AB. Trên cung lớn AB lấy điểm C sao cho A < CB. Các đường cao AE và BF của tam giác ABC cắt nhau tại I.

a) Chứng minh tứ giác AFEB là tứ giác nội tiếp

b) Chứng minh CF.CB = CE.CA

c) Nếu dây AB có độ dài bằng R√3 , hãy tính số đo của (ACB)

d) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O; R) tại điểm thứ hai là K (K khác C). Vẽ đường kính CD của (O; R). Gọi P là trung điểm của AB. Chứng minh rằng ba điểm K, P, D thẳng hàng.

Hướng dẫn giải

Phần trắc nghiệm (2 điểm)

1.D 2.A 3.B 4.C

Phần tự luận (8 điểm)

Bài 1

Đề kiểm tra Toán 9 | Đề thi Toán 9

Biểu thức A xác định khi √x - 1 ≠ 0 ⇔ √x ≠ 1 ⇔ x ≠ 1

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy GTNN của P là 2√3 + 3 đạt được khi x = 4 + 2√3

Bài 2

Gọi chiều dài của tấm bìa là x (x > 3) (dm)

⇒ Chiều rộng của tấm bìa là x – 3 (dm)

Nếu tăng chiều dài 1 dm và giảm chiều rộng 1 dm thì diện tích là 66 dm2 nên ta có phương trình:

(x + 1)(x – 3 – 1) = 66

⇔ (x + 1)(x – 4 ) = 66

⇔ x2 – 3x – 4 – 66 = 0

⇔ x2 – 3x – 70 = 0

Δ = 32 - 4.(-70) = 289 ⇒ √Δ = 17

⇒ Phương trình đã cho có 2 nghiệm

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do x > 3 nên x =10

Vậy chiều dài của tấm bìa là 10 dm

Chiều rộng của tấm bìa là 7 dm.

Bài 3

1) x4 + mx2 - m - 1 = 0

a) Khi m = 2, phương trình trở thành: x4 + 2x2 – 3 = 0

Đặt x2 = t (t ≥ 0). Khi đó ta có phương trình: t2 + 2t - 3 = 0

⇒ Phương trình có nghiệm t = 1 và t = -3 (do phương trình có dạng a + b + c = 0)

Do t ≥ 0 nên t = 1 ⇒ x2 = 1 ⇒ x = ±1

b) Đặt x2 = t (t ≥ 0). Khi đó ta có phương trình: t2 – mt – m – 1 = 0 (*)

Δ = m2 - 4(-m - 1) = m2 + 4m + 4 = (m + 2)2

Phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

2) parabol (P): y = x2 ; đường thẳng (d): y = 2x + m (m là tham số).

a) phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2x + m ⇔ x2 - 2x - m = 0

Δ'= 1 + m

(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm

⇔ Δ'= 1 + m = 0 ⇔ m = -1

Khi đó hoành độ giao điểm là x = 1

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9 Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

SAOM = 1/2 AA'.OM ; SBOM = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

Bài 4

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác AEFB có:

∠(AFB) = 90o ( AF là đường cao)

∠(AEB) = 90o ( BE là đường cao)

⇒ 2 đỉnh E và F cùng nhìn cạnh AB dưới 1 góc bằng nhau

⇒ AEFB là tứ giác nội tiếp.

b) Xét ΔBEC và ΔAFC có:

∠(BCA) là góc chung

∠(BEC) = ∠(AFC) = 90 o

⇒ ΔBEC ∼ ΔAFC

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Gọi P là trung điểm của AB

Do tam giác OAB cân tại O nên OP ⊥ AB

Tam giác OAP vuông tại P có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ Tứ giác CEIF là tứ giác nội tiếp và CI là đường kính đường tròn ngoại tiếp tứ giác CEIF

Ta có: IK ⊥ KC ( góc nội tiếp chắn nửa đường tròn ngoại tiếp tứ giác CEIF)

DK ⊥ KC (góc nội tiếp chắn nửa đường tròn (O)

⇒ D; I; K thẳng hàng (1)

Ta có:

DB ⊥ BC (góc nội tiếp chắn nửa đường tròn (O)

AI ⊥ BC ( AI là đường cao của tam giác ABC)

⇒ AI // BD

DA ⊥ BA(góc nội tiếp chắn nửa đường tròn (O)

BI ⊥ BA ( BI là đường cao của tam giác ABC)

⇒ AD // BI

Xét tứ giác ADBI có: AI // BD và AD // BI

⇒ ADBI là hình bình hành

Do P là trung điểm của AB ⇒ P là trung điểm của DI

Hay D; P; I thẳng hàng (2)

Từ (1) và (2) ⇒ D; P; K thẳng hàng.

....................................

....................................

....................................

Trên đây là phần tóm tắt một số đề thi trong các bộ đề thi Toán lớp 9 năm học 2021 - 2022, để xem đầy đủ mời quí bạn đọc lựa chọn một trong các bộ đề thi ở trên!

Lưu trữ: Đề thi Toán lớp 9 theo Chương

Xem thêm bộ đề thi các môn học lớp 9 năm học 2021 - 2022 chọn lọc, có đáp án hay khác:

Giới thiệu kênh Youtube VietJack

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Loạt bài Đề thi Toán lớp 9 năm học 2021 - 2022 học kì 1 và học kì 2 được biên soạn bám sát cấu trúc ra đề thi mới Tự luận và Trắc nghiệm giúp bạn giành được điểm cao trong các bài thi Toán lớp 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Nhóm học tập 2k7