Giải Toán lớp 12 Chương 1: Khối đa diện



Giải Toán lớp 12 Chương 1: Khối đa diện

Với giải bài tập Toán 12 Hình học Chương 1: Khối đa diện hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập về nhà môn Toán lớp 12. Bên cạnh đó là các bài tóm tắt lý thuyết Toán lớp 12 [có kèm video bài giảng] và bộ bài tập trắc nghiệm theo bài học cùng với trên 50 dạng bài tập Toán lớp 12 với đầy đủ phương pháp giải giúp bạn ôn luyện để đạt điểm cao trong các bài thi môn Toán lớp 12.

Tài liệu lý thuyết và các dạng bài tập Toán lớp 12 Chương 1: Khối đa diện:




Giải bài tập Toán lớp 12 Bài 1: Khái niệm về khối đa diện

Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 4: Nhắc lại định nghĩa hình lăng trụ và hình chóp.

Lời giải:

- Hình lăng trụ là hình gồm có hai đáy là hai đa giác bằng nhau và nằm trên hai mặt phẳng song song, các mặt bên là hình bình hành, các cạnh bên song song hoặc bằng nhau

- Hình chóp là một hình không gian gồm có một đa giác gọi là mặt đáy, các tam giác chung đỉnh gọi là mặt bên, đỉnh chung của các mặt bên đó gọi là đỉnh của hình chóp.

Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 6: Kể tên các mặt của hình lăng trụ ABCDE.A’B’C’D’E’ và hình chóp S.ABCDE (h.1.4 ).

Giải bài tập Toán 12 | Giải Toán lớp 12

Lời giải:

- Các mặt của hình lăng trụ ABCDE.A’B’C’D’E’là: ABB’A’, BCC’B’, CDD’C’, DEE’D’, EAA’E’, ABCDE, A’B’C’D’E’

- Các mặt của hình chóp S.ABCDE là: SAB, SBC, SCD, SDE, SAE, ABCDE

Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 8: Giải thích tại sao hình 1.8c không phải là một khối đa diện?

Giải bài tập Toán 12 | Giải Toán lớp 12

Lời giải:

Hình đa diện có tính chất: Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác

Nhưng hình 1.8c có cạnh AB là cạnh chung có 4 đa giác (không thỏa mãn t/c)

Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 10: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau.

Giải bài tập Toán 12 | Giải Toán lớp 12

Lời giải:

Phép đối xứng qua mặt phẳng (BDD’B’) biến lăng trụ ABD.A’B’D’ thành BCD.B’C’D’

⇒ hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau.

Bài 1 (trang 12 SGK Hình học 12): Chứng minh rằng một đa diện có các mặt là những tam giác thì tổng số các mặt của nó phải là một số chẵn. Cho ví dụ:

Lời giải:

* Gọi a là số cạnh, b là số mặt của khối đa diện.

Nếu khối đa diện có các mặt là tam giác thì mỗi mặt có ba cạnh. Trong ba cạnh đó mỗi cạnh lần lượt là cạnh chung của hai mặt.

Ta có 3b = 2a. Nghĩa là b chẵn.

Mà 2a chia hết cho 2 nên 3b cũng chia hết cho 2

⇒ b chia hết cho 2 hay b là số chẵn.

* Ví dụ: hình tứ diện đều có 4 mặt

Giải bài 1 trang 12 sgk Hình học 12 | Để học tốt Toán 12

....................................

....................................

....................................

Giải bài tập Toán lớp 12 Bài 2: Khối đa diện lồi và khối đa diện đều

Trả lời câu hỏi Toán 12 Hình học Bài 2 trang 15: Tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế.

Lời giải:

Khối đa diện lồi trong thực tế: kim tự tháp Ai Cập, viên kim cương, rubic

Khối đa diện không lồi trong thực tế: cái bàn

Trả lời câu hỏi Toán 12 Hình học Bài 2 trang 16: Đếm số đỉnh, số cạnh của khối bát diện đều.

Lời giải:

Khối bát diện đều có 6 đỉnh và 12 cạnh

Giải bài tập Toán 12 | Giải Toán lớp 12

Trả lời câu hỏi Toán 12 Hình học Bài 2 trang 17: Chứng minh rằng tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng a/2.

Giải bài tập Toán 12 | Giải Toán lớp 12

Lời giải:

ABCD là tứ diện đều ⇒ tam giác ABC đều ⇒ AB = BC = CA = a

I, E, F lần lượt là trung điểm của các cạnh AC, AB, BC nên ta có IE, IF, EF là các đường trung bình của tam giác ABC

⇒ IE = 1/2 BC = 1/2 a

IF = 1/2 AB = 1/2 a

EF = 1/2 AC = 1/2 a

Nên tam giác IEF là tam giác đều cạnh bằng a/2

Chứng minh tương tự ta có: IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng a/2

....................................

....................................

....................................

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official




Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên