Giải Toán lớp 12 Chương 3: Nguyên hàm - Tích phân và ứng dụng



Giải Toán lớp 12 Chương 3: Nguyên hàm - Tích phân và ứng dụng

Bài giảng: Bài 1 : Nguyên hàm - Thầy Trần Thế Mạnh (Giáo viên VietJack)

Với giải bài tập Toán 12 Giải tích Chương hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập về nhà môn Toán lớp 12. Bên cạnh đó là các bài tóm tắt lý thuyết Toán lớp 12 [có kèm video bài giảng] và bộ bài tập trắc nghiệm theo bài học cùng với trên 50 dạng bài tập Toán lớp 12 với đầy đủ phương pháp giải giúp bạn ôn luyện để đạt điểm cao trong các bài thi môn Toán lớp 12.

Tài liệu lý thuyết và các dạng bài tập Toán lớp 12 Chương 3: Nguyên hàm - Tích phân và ứng dụng:




Giải bài tập Toán lớp 12 Bài 1: Nguyên hàm

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Tìm hàm số F(x) sao cho F’(x) = f(x) nếu:

a) f(x) = 3x2 với x ∈ (-∞; +∞);

b) f(x) = 1/(cos⁡x)2 với x ∈ ((-π)/2; π/2).

Lời giải:

F(x) = x3 vì (x3)' = 3x2

F(x) = tanx vì (tanx)' = 1/(cos⁡x)2 .

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Hãy tìm thêm những nguyên hàm khác của các hàm số nêu trong Ví dụ 1.

Lời giải:

(x) = x2 + 2 do (F(x))'=( x2 + 2)’ = 2x + 0 = 2x. Tổng quát F(x) = x2 + c với c là số thực.

F(x) = lnx + 100, do (F(x))’ = 1/x , x ∈ (0,+∞). Tổng quát F(x)= lnx + c, x ∈ (0,+∞) và với c là số thực.

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Hãy chứng minh Định lý 1.

Lời giải:

Vì F(x) là nguyên hàm của f(x) trên K nên (F(x))' = f(x). Vì C là hằng số nên (C)’ = 0.

Ta có:

(G(x))' = (F(x) + C)' = (F(x))' + (C)' = f(x) + 0 = f(x)

Vậy G(x) là một nguyên hàm của f(x).

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 95: Hãy chứng minh Tính chất 3.

Lời giải:

Ta có [∫f(x) ± ∫g(x)]'= [∫f(x) ]'± [∫g(x) ]' = f(x)±g(x).

Vậy ∫f(x) ± ∫g(x) = ∫[f(x)±g(x)].

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 96: Lập bảng theo mẫu dưới đây rồi dùng bảng đạo hàm trang 77 và trong SGK Đại số và Giải tích 11 để điền vào các hàm số thích hợp vào cột bên phải.

Lời giải:

f’(x) f(x) + C
0 C
αxα -1 xα + C
1/x (x ≠ 0) ln⁡(x) + C nếu x > 0, ln⁡(-x) + C nếu x < 0.
ex ex + C
axlna (a > 1, a ≠ 0) ax + C
Cosx sinx + C
- sinx cosx + C
1/(cosx)2 tanx + C
(-1)/(sinx)2 cotx + C

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 98:

a) Cho ∫(x - 1)10 dx. Đặt u = x – 1, hãy viết (x - 1)10dx theo u và du.

b)∫Giải bài tập Toán 12 | Giải Toán lớp 12 . Đặt x = et, hãy viết Giải bài tập Toán 12 | Giải Toán lớp 12 theo t và dt.

a) Ta có (x - 1)10dx = u10 du (do du = d(x - 1) = dx.

b) Ta có dx = d(et) = et dt, do đó Giải bài tập Toán 12 | Giải Toán lớp 12

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 99: Ta có (xcosx)’ = cosx – xsinx hay - xsinx = (xcosx)’ – cosx.

Hãy tính ∫ (xcosx)’ dx và ∫ cosxdx. Từ đó tính ∫ xsinxdx.

Lời giải:

Ta có ∫ (xcosx)’dx = (xcosx) và ∫ cosxdx = sinx. Từ đó

∫ xsinxdx = - ∫ [(xcosx)’ – cosx]dx = -∫ (xcosx)’dx + ∫ cosxdx = - xcosx + sinx + C.

....................................

....................................

....................................

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official




Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên