Bài 24 trang 111 Toán 9 Tập 1



Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn.

Video Bài 24 trang 111-112 SGK Toán 9 Tập 1 - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Bài 24 (trang 111-112 SGK Toán 9 Tập 1): Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C.

Quảng cáo

a) Chứng minh rằng CB là tiếp tuyến của đường tròn.

b) Cho bán kính của đường tròn bằng 15cm, AB = 24 cm. Tính độ dài OC.

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

a)

Gọi H là giao điểm của OC và AB

Xét đường tròn (O) có

OH ⊥ AB tại H mà OH là 1 phần của đường kính và AB là dây của đường tròn

Do đó, H là trung điểm của AB (do đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy)

=> HA = HB = 12AB

Mà ta lại có: OC ⊥ AB tại H, do đó, OC là đường trung trực của AB

=> CB = CA (tính chất đường trung trực)

Xét tam giác CBO và tam giác CAO có:

CO chung

CA = CB (chứng minh trên)

OB = OA = R (do B, A nằm trên đường tròn (O))

Do đó, tam giác CBO và tam giác CAO bằng nhau theo trường hợp cạnh cạnh cạnh.

=> CBO^=CAO^

Quảng cáo

Vì AC là tiếp tuyến của đường tròn (O) nên có:

AC ⊥ OA => CAO^=90oCBO^=CAO^=90o

Tức là CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

Do đó, CB là tiếp tuyến của đường tròn (O) tại B.

b)

Ta có: OA = OB = R = 15cm

HA = AB2=242 = 12 (cm) (chứng minh phần a)

Xét tam giác HOA vuông tại H (do OC ⊥ AB tại H)

Áp dụng định lí Py-ta-go ta có:

OA2 = OH2 + HA2

=> OH2 = OA2 - HA2 = 152 - 122 = 81

=> OH = 81 = 9 (cm)

Xét tam giác BOC vuông tại B (do CB vuông góc với OB tại B – chứng minh phần a) có đường cao BH.

Áp dụng hệ thức lượng trong tam giác vuông ta có:

OB2 = OC.OH => OC = OB2OH=1529 = 25(cm).

Quảng cáo

Tham khảo lời giải các bài tập Toán 9 bài 5 khác:

Luyện tập

Các bài giải Toán 9 Tập 1 Chương 2 khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát theo chương trình sgk Toán 9 (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-5-dau-hieu-nhan-biet-tiep-tuyen-cua-duong-tron.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên