Cho hàm số y = (m – 1)x^3 + 2(m + 1)x^2 – x + m – 1 (m là tham số)
Giải SBT Toán 12 Chân trời sáng tạo Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản
Bài 2 trang 31 SBT Toán 12 Tập 1: Cho hàm số y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1 (m là tham số)
a) Khảo sát và vẽ đồ thị của hàm số khi m = −1.
b) Tìm giá trị của m để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
Lời giải:
a) Khi m = −1 ta được: y = −2x3 – x – 2.
Tập xác định: D = ℝ.
Ta có: y' = −6x2 – 1
y' = 0 phương trình vô nghiệm.
Ta có bảng biến thiên:
Hàm số nghịch biến trên ℝ.
Hàm số không cực trị.
Đồ thị hàm số
b) Ta có: y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1
y' = 3(m – 1)x2 + 4(m + 1)x – 1
y'' = 6(m – 1)x + 4(m + 1).
y'' = 0 ⇔ .
Để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
⇔ ⇔ ⇔ m = 2.
Lời giải SBT Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay khác:
Bài 1 trang 31 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: a) y = x(x2 – 4x);....
Bài 5 trang 31 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: a) y = 3 + ....
Bài 8 trang 32 SBT Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: a) ....
Bài 10 trang 32 SBT Toán 12 Tập 1: Cho hàm số y = (m là tham số).....
Bài 11 trang 32 SBT Toán 12 Tập 1: Cho hàm số y = (m là tham số). ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST