Gieo ba con xúc xắc cân đối và đồng chất. Xét các biến cố sau

Giải sách bài tập Toán 12 Bài tập ôn tập cuối năm - Kết nối tri thức

Bài 43 trang 55 SBT Toán 12 Tập 2: Gieo ba con xúc xắc cân đối và đồng chất. Xét các biến cố sau:

A: “Số chấm trên mặt xuất hiện của ba con xúc xắc khác nhau”;

B: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Tính P(A | B) và P(B | A).

Quảng cáo

Lời giải:

Ta có: Ω  = {(a; b; c); 1 ≤ a, b, c ≤ 6} ⇒ n(Ω) = 6.6.6 = 216.

A = {(a; b; c)}, trong đó 1 ≤ a, b, c ≤ 6 và a, b, c là các số nguyên dương phân biệt.

Đó chính là một chỉnh hợp chập 3 của 6 phần tử {1; 2; 3; 4; 5; 6}.

Suy ra n(A) = A63  = 120.

Vậy P(A) = 120216 .

Xét biến cố đối B¯ : “Số chấm xuất hiện trên mỗi con xúc xắc đều khác 6”.

Mỗi kết quả thuận lợi cho B¯  là một bộ ba số (a; b; c), trong đó a, b, c là các số nguyên dương bé hơn 6. Do đó, ta có n(B) = 5.5.5 = 125.

Vậy P(B¯) = 125216 .

Suy ra P(B) = 1 – P(B¯) = 91216.

Mỗi kết quả thuận lợi cho AB là một bộ ba (a; b; c), trong đó 1 ≤ a, b, c ≤ 6 và a, b, c là các số nguyên dương khác nhau và có đúng một số bằng 6.

Có ba cách chọn một số bằng 6 và  = 20 cách chọn hai số còn lại trong 5 số {1; 2; 3; 4; 5}.

Ta có: n(B) = 3.20 = 60.

Suy ra P(AB) = 60216.

Từ đó, ta có:

P(A | B) = PABPB=6091;

P(B | A) = PABPA=60120=12.

Quảng cáo

Lời giải Sách bài tập Toán lớp 12 Bài tập ôn tập cuối năm hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác