Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC

Giải sách bài tập Toán 8 Bài 36: Các trường hợp đồng dạng của hai tam giác vuông - Kết nối tri thức

Bài 9.53 trang 64 SBT Toán lớp 8 Tập 2: Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.

a) Chứng minh rằng CM ⊥ DN.

b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.

Quảng cáo

Lời giải:

Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC

a) Vì ABCD là hình vuông nên AB = BC = CD = DA;

DAB^=ABC^=BCD^=CDA^=90° .

Vì M là trung điểm của AB nên AM = MB = 12 AB.

Vì N là trung điểm của BC nên NB = NC = 12 BC.

Mà AB = BC nên AM = MB = NB = NC.

Xét tam giác CBM vuông ở B và tam giác DCN vuông ở C có:

MB = NC (cmt)

BC = CD (cmt)

Do đó, tam giác CBM và tam giác DCN bằng nhau (hai cạnh góc vuông).

Suy ra BMC^=DNC^ .

BMC^+MCB^=90°  nên DNC^+MCB^=90° .

Tam giác CON có:

 ONC^+OCN^=90° (do DNC^+MCB^=90° ).

Nên NOC^=90° .

Do đó, CM vuông góc với DN tại O.

b) Ta có BC = CD = DA = AB = 4 cm; NC = 12 BC = 12 CD = 2 cm hay CD = 2NC.

Áp dụng định lý Pythagore vào tam giác CND vuông tại C ta có:

ND2 = NC2 + CD2 = NC2 + (2NC)2 = 5NC2.

Do đó, NC2ND2=15  . Suy ra NCND=15 .

Xét tam giác NOC vuông tại O và tam giác CND vuông tại C có:

ONC^ chung

Do đó, ∆ONC ᔕ ∆CND  (góc nhọn).

Suy ra ONCN=OCCD=NCND=15 . Do đó, OC = 15 CD; ON = CN.

Vậy diện tích tam giác ONC là:

S=12OCON=12.15CD15CN=11042=0,8 (cm2).

Quảng cáo

Lời giải SBT Toán 8 Bài 36: Các trường hợp đồng dạng của hai tam giác vuông hay khác:

Quảng cáo
Quảng cáo

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

Săn SALE shopee tháng này:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 8 Tập 1 & Tập 2 hay, chi tiết của chúng tôi được biên soạn bám sát Sách bài tập Toán 8 Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Kết nối tri thức khác
Tài liệu giáo viên