Hệ bất phương trình bậc nhất hai ẩn (Lý thuyết Toán lớp 10) | Kết nối tri thức
Với tóm tắt lý thuyết Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.
Hệ bất phương trình bậc nhất hai ẩn (Lý thuyết Toán lớp 10) | Kết nối tri thức
Lý thuyết Hệ bất phương trình bậc nhất hai ẩn
1. Hệ bất phương trình bậc nhất hai ẩn
- Hệ bất phương trình bậc nhất hai ẩn là một hệ gồm hai hay nhiều bất phương trình bậc nhất hai ẩn.
- Cặp số (x0; y0) là nghiệm của một hệ bất phương trình bậc nhất hai ẩn khi (x0; y0) đồng thời là nghiệm của tất cả các bất phương trình trong hệ đó.
Ví dụ:
là một hệ bất phương trình hai ẩn gồm 2 bất phương trình x + 2y < 9 và y – 2x > 9.
không phải là hệ bất phương trình bậc nhất hai ẩn bởi x2 + y2 < 5 là bất phương trình bậc hai 2 ẩn.
- Cho hệ bất phương trình hai ẩn .
Cặp (x; y) = (10; 2) là nghiệm của bất phương trình x + y > 9 và cũng là nghiệm của bất phương trình x – y < 9. Nên cặp (x; y) = (10; 2) là nghiệm của hệ bất phương trình trên.
2. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ
- Trong mặt phẳng tọa độ, tập hợp các điểm có tọa độ là nghiệm của hệ bất phương trình bậc nhất hai ẩn là miền nghiệm của hệ bất phương trình đó.
- Miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ.
- Cách xác định miền nghiệm của một hệ bất phương trình bậc nhất hai ẩn:
+ Trên cùng một mặt phẳng tọa độ, xác định miền nghiệm của mỗi bất phương trình bậc nhất hai ẩn trong hệ và gạch bỏ miền còn lại.
+ Miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho.
Ví dụ: Xác định miền nghiệm của hệ bất phương trình bậc nhất hai ẩn: :
Bước 1: Xác định miền nghiệm D1 của bất phương trình x ≥ 0 và gạch bỏ phần miền còn lại.
- Đường thẳng x = 0 là trục tọa độ Oy.
- Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy nằm bên phải trục Oy.
Bước 2: Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox nằm bên trên trục Ox.
Bước 3: Miền nghiệm D3 của bất phương trình x + y ≤ 150:
- Vẽ đường thẳng d: x + y = 150.
- Vì 0 + 0 ≤ 150 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 150.
Do đó, miền nghiệm D3 của bất phương trình x + y ≤ 150 là nửa mặt phẳng bờ d chứa gốc tọa độ O.
Từ đó ta có miền nghiệm tô màu xanh chính là giao miền nghiệm của các bất phương trình trong hệ.
3. Ứng dụng của hệ bất phương trình bậc nhất hai ẩn
Nhận xét: Tổng quát, người ta chứng minh được rằng giá trị lớn nhất (hay nhỏ nhất) của biểu thức F(x; y) = ax + by, với (x; y) là tọa độ các điểm thuộc miền đa giác A1A2...An, tức là các điểm nằm bên trong hay nằm trên các cạnh của đa giác, đạt được tại một trong các đỉnh của đa giác đó.
Ví dụ: Cho hệ bất phương trình bậc nhất hai ẩn: và F(x; y) = 3,5x + 2y. Tìm giá trị lớn nhất của F(x; y).
Hướng dẫn giải:
Bước 1: Xác định miền nghiệm của hệ bất phương trình trên.
- Xác định miền nghiệm D1 của bất phương trình x ≥ 0.
- Đường thẳng x = 0 là trục tọa độ Oy.
- Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy nằm bên phải trục Oy.
- Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox nằm bên trên trục Ox.
- Miền nghiệm D3 của bất phương trình x + y ≤ 100:
+ Vẽ đường thẳng d1: x + y = 100.
+ Vì 0 + 0 ≤ 100 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 100.
Do đó, miền nghiệm D3 của bất phương trình x + y ≤ 100 là nửa mặt phẳng bờ d1 chứa gốc tọa độ O.
- Miền nghiệm D4 của bất phương trình 2x + y ≤ 120:
+ Vẽ đường thẳng d2: 2x + y = 120.
+ Vì 2. 0 + 0 ≤ 120 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình 2x + y ≤ 120.
Do đó, miền nghiệm D4 của bất phương trình 2x + y ≤ 120 là nửa mặt phẳng bờ d2 chứa gốc tọa độ O.
Từ đó ta có miền nghiệm tô màu xanh chính là giao miền nghiệm của các bất phương trình trong hệ.
Miền nghiệm là miền tứ giác OABC với O(0;0), A(0;100), B(20;80) và C(60;0).
Bước 2: Tính giá trị của biểu thức F tại các đỉnh của tứ giác
F(O) = 0; F(A) = 200; F(B) = 230; F(C) = 210.
Bước 3: So sánh các giá trị thu được ở Bước 2, kết luận giá trị lớn nhất của F(x; y) là 230.
Bài tập Hệ bất phương trình bậc nhất hai ẩn
Bài 1. Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
a)
b)
c) 2x + y > 0
d)
Hướng dẫn giải
- Hệ bất phương trình là hệ bất phương trình bậc nhất hai ẩn vì có 2 bất phương trình x < 0 và y > 0 đều là bất phương trình bậc nhất hai ẩn.
- Hệ bất phương trình không là hệ bất phương trình bậc nhất hai ẩn vì có bất phương trình x2 < 0 không là bất phương trình bậc nhất hai ẩn.
- 2x + y > 0 không là hệ bất phương trình bậc nhất hai ẩn vì chỉ có một bất phương trình bậc nhất hai ẩn.
Hệ bất phương trình là hệ bất phương trình bậc nhất hai ẩn vì có 2 bất phương trình x – y < 0 và x + y > 1010 đều là bất phương trình bậc nhất hai ẩn.
Vậy có hệ và là hệ bất phương trình bậc nhất hai ẩn.
Bài 2. Cho hệ bất phương trình . Hỏi đây có phải hệ bất phương trình bậc nhất hai ẩn không? Khi cho y = 0, x có thể nhận các giá trị nguyên nào?
Hướng dẫn giải
là hệ bất phương trình bậc nhất hai ẩn bởi vì có 2 bất phương trình x + 2y < 0 và x – 4y > –6 là bất phương trình bậc nhất 2 ẩn.
Khi y = 0, hệ trở thành: ⇔ –6 < x < 0
Vậy x có thể nhận các giá trị nguyên là: {–5; –4; –3; –2; –1}.
Bài 3. Cho hệ bất phương trình
a) Tìm 2 nghiệm của hệ trên.
b) Cho F(x; y) = 2x + 2y. Tìm giá trị lớn nhất của F(x; y).
Hướng dẫn giải
a) Chọn (x; y) = (1; 1).
Thay x = 1 và y = 1 vào bất phương trình x ≥ 0 ta được 1 ≥ 0 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình x ≥ 0.
Thay x = 1 và y = 1 vào bất phương trình y ≥ 0 ta được 1 ≥ 0 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình y ≥ 0.
Thay x = 1 và y = 1 vào bất phương trình x + y ≤ 120 ta được 1 + 1 ≤ 120 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình x + y ≤ 120.
Thay x = 1 và y = 1 vào bất phương trình 2x + y ≤ 180 ta được 2. 1 + 1 ≤ 180 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình 2x + y ≤ 180.
Vậy (x; y) = (1; 1) là nghiệm của hệ bất phương trình .
Tương tự ta chọn được (x; y) = (2; 2) thỏa mãn tất cả các bất phương trình trong hệ đã cho. Do đó (2; 2) là nghiệm của hệ bất phương trình .
Vậy 2 nghiệm của hệ trên là (1; 1) và (2; 2).
b)
- Xác định miền nghiệm D1 của bất phương trình x ≥ 0.
+ Đường thẳng x = 0 là trục tọa độ Oy.
+ Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy nằm bên phải trục Oy.
- Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox nằm bên trên trục Ox.
- Miền nghiệm D3 của bất phương trình x + y ≤ 120:
+ Vẽ đường thẳng d1: x + y = 120.
+ Vì 0 + 0 ≤ 120 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 120.
Do đó, miền nghiệm D3 của bất phương trình x + y ≤ 120 là nửa mặt phẳng bờ d1 chứa gốc tọa độ O.
- Miền nghiệm D4 của bất phương trình 2x + y ≤ 180:
+ Vẽ đường thẳng d2: 2x + y = 180.
+ Vì 2. 0 + 0 ≤ 180 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình 2x + y ≤ 180.
Do đó, miền nghiệm D4 của bất phương trình 2x + y ≤ 180 là nửa mặt phẳng bờ d2 chứa gốc tọa độ O.
Từ đó ta có miền nghiệm tô màu xanh đậm nhất chính là giao miền nghiệm của các bất phương trình trong hệ.
Miền nghiệm của hệ bất phương trình trên là miền tứ giác OABC với:
O(0;0), A(0;120), B(60;60), C(90;0).
Ta có: F(O) = 0; F(A) = 240; F(B) = 240; F(C) = 180.
Vậy giá trị lớn nhất của F(x; y) là 240 khi (x; y) = (60; 60) hoặc (0; 120).
Học tốt Hệ bất phương trình bậc nhất hai ẩn
Các bài học để học tốt Hệ bất phương trình bậc nhất hai ẩn Toán lớp 10 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT