Với 18 bài tập trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ
các mức độ, có đúng sai, trả lời ngắn sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
Câu 1. Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn ?
Quảng cáo
A.
B.
C.
D.
Đáp án đúng là: A
Các hệ bất phương trình ; ; đều chứa các bất phương trình bậc hai hoặc bậc ba như : x2 + 3y ≥ 2 ; x + y3 > 0 ; – x2 + 3y ≥ 5.
Do đó, các hệ bất phương trình ; ; không phải là hệ bất phương trình bậc nhất hai ẩn.
Hệ có hai bất phương trình x + 3y ≥ 0 và 2x ≤ 0 đều là các bất phương trình bậc nhất hai ẩn.
Vậy ta chọn đáp án A.
Câu 2. Trong các khẳng định sau, khẳng định nào đúng?
A. Điểm O(0 ; 0) thuộc miền nghiệm của hệ bất phương trình
B. Điểm M(1 ; 0) thuộc miền nghiệm của hệ bất phương trình
C. Điểm N(0 ; –1) thuộc miền nghiệm của hệ bất phương trình
D. Điểm P(1 ; 1) thuộc miền nghiệm của hệ bất phương trình
Đáp án đúng là: A
+ Vì –0 + 3.0 = 0 và 2.0 = 0 nên cặp số (0; 0) là nghiệm của cả hai bất phương trình –x + 3y ≥ 0 và 2x ≤ 0.
Suy ra điểm O(0; 0) thuộc miền nghiệm của hệ .
Vậy khẳng định A là đúng.
+ Vì –1 + 3.0 = –1 < 0 và 2. (–1) = –2 < 0 nên cặp số (1 ; 0) không là nghiệm của bất phương trình –x + 3y ≥ 0.
Suy ra điểm M(1 ; 0) không thuộc miền nghiệm của hệ .
Vậy khẳng định B là sai.
+ Vì –0 + 3. (–1) = –3 < 0 và 2. 0 = 0 nên cặp số (0; –1) không là nghiệm của bất phương trình –x + 3y ≥ 0.
Suy ra điểm N(0 ; –1) không thuộc miền nghiệm của hệ .
Vậy khẳng định C là sai.
+ Vì –1 + 3. 1 = 2 > 0 và 2. 1 = 2 > 0 nên cặp số (1; 1) không là nghiệm của bất phương trình 2x ≤ 0.
Suy ra điểm P(1; 1) không thuộc miền nghiệm của hệ .
Vậy khẳng định D là sai.
Vậy ta chọn đáp án A.
Quảng cáo
Câu 3. Tìm khẳng định sai trong các khẳng định sau:
A. Hệ không phải là hệ bất phương trình bậc nhất hai ẩn;
B. Hệ là hệ bất phương trình bậc nhất hai ẩn;
C. Hệ là hệ bất phương trình bậc nhất hai ẩn;
D. Hệ là hệ bất phương trình bậc nhất hai ẩn;
Đáp án đúng là: C
+ Vì chứa bất phương trình bậc hai y2 – 1 ≤ 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.
Do đó khẳng định A đúng.
+ Vì chứa hai bất phương trình x ≥ 1 + y và 5x + y < 0 đều là các bất phương trình bậc nhất hai ẩn, nên hệ này là hệ bất phương trình bậc nhất hai ẩn.
Do đó khẳng định B đúng.
+ Vì chứa bất phương trình bậc hai x2 + y < 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.
Do đó khẳng định C sai.
+ Vì chứa hai bất phương trình và x + 3y ≤ 0 đều là các bất phương trình bậc nhất hai ẩn nên hệ này là hệ bất phương trình bậc nhất hai ẩn.
Do đó khẳng định D đúng.
Vậy ta chọn đáp án C.
Câu 4. Cho hệ bất phương trình . Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho?
A. M(0; 1);
B. N(–1; 1);
C. P(–1; 4);
D. Q(1; 3).
Đáp án đúng là: B
+ Ta có : –0 + 2.1 = 2 và 2.0 + 1 = 1 > –1.
Do đó cặp số (0; 1) không là nghiệm của bất phương trình 2x + y ≤ –1.
Vậy nên cặp số (0; 1) không là nghiệm của hệ bất phương trình .
Suy ra điểm M(0; 1) không thuộc miền nghiệm của hệ bất phương trình
+ Ta có : –(–1) +2.1 = 3 > 2 và 2.(–1) + 1 = –1.
Do đó cặp số (–1; 1) là nghiệm của cả hai bất phương trình –x + 3y ≥2 và 2x + y ≤ –1.
Vậy nên, cặp số (–1; 1) là nghiệm của hệ bất phương trình .
Suy ra điểm N(–1; 1) thuộc miền nghiệm của hệ bất phương trình .
+ Ta có : –(–1) + 2.4 = 9 > 2 và 2.(–1) + 4 = 2 > –1.
Do đó cặp số (–1; 4) không là nghiệm của bất phương trình 2x + y ≤ –1.
Vậy nên cặp số (–1; 4) không là nghiệm của hệ bất phương trình .
Suy ra điểm P(–1; 4) không thuộc miền nghiệm của hệ bất phương trình
+ Ta có : –1 + 2.3 = 5 > 2 và 2.1 + 3 = 5 > –1.
Do đó cặp số (1; 3) không là nghiệm của bất phương trình 2x + y ≤ –1.
Vậy nên cặp số (1; 3) không là nghiệm của hệ bất phương trình .
Suy ra điểm Q(1; 3) không thuộc miền nghiệm của hệ bất phương trình
Vậy điểm N(–1; 1) thuộc miền nghiệm của hệ bất phương trình đã cho nên ta chọn đáp án B.
Câu 5. Cho hệ bất phương trình . Và các điểm sau: M(–1 ; 2), N(0; –1), O(0; 0). Có mấy điểm thuộc miền nghiệm của hệ bất phương trình đã cho?
Quảng cáo
A. 0;
B. 1;
C. 2;
D. 3.
Đáp án đúng là: C
+ Ta có : –3. (–1) + 2 = 5 > –2 và –1 + 2.2 = 3 > 1.
Do đó cặp số (–1 ; 2) không là nghiệm của bất phương trình x + 2y ≤ 1.
Vậy nên cặp số (–1 ; 2) không là nghiệm của hệ bất phương trình .
Suy ra điểm M(–1 ; 2) không thuộc miền nghiệm của hệ bất phương trình .
+ Ta có : –3. 0 + (–1)= –1 > –2 và 0 + 2. (–1) = –2 < 1.
Do đó cặp số (0; –1) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.
Vậy nên cặp số (0; –1) là nghiệm của hệ bất phương trình .
Suy ra điểm M(0; –1) thuộc miền nghiệm của hệ bất phương trình .
+ Ta có : –3. 0 + 0 = 0 > –2 và 0 + 2.0 = 0 < 1.
Do đó cặp số (0 ; 0) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.
Vậy nên cặp số (0 ; 0) là nghiệm của hệ bất phương trình .
Suy ra điểm O(0 ; 0) thuộc miền nghiệm của hệ bất phương trình .
Vậy hai điểm M(0; –1) và O(0 ; 0) thuộc miền nghiệm của hệ .
Do đó ta chọn đáp án C.
Câu 6. Cặp số (0; –3) là nghiệm của hệ bất phương trình nào sau đây?
A.
B.
C.
D.
Đáp án đúng là: C
+ Ta có : 0 – (–3)= 3 > 1 và 0 + 3. (–3) < 3.0 – 4 (–9 < –4) là mệnh đề đúng.
Do đó cặp số (0; –3) không là nghiệm của bất phương trình x – y ≤ –1.
Vậy nên cặp số (0; –3) không là nghiệm của hệ bất phương trình .
+ Ta có : 2.0 – (–3)= 3 > 0 và 2.0 + (–3) = – 3 < 1.
Do đó cặp số (0; –3) không là nghiệm của bất phương trình 2x + y > 1.
Vậy nên cặp số (0; –3) không là nghiệm của hệ bất phương trình .
+ Ta có : –0 – 4.(–3)= 12 > – 3 và 2.0 + (–3) = – 3 < 2.
Do đó cặp số (0; –3) là nghiệm của cả hai bất phương trình –x –4y > –3 và 2x + y ≤ 2.
Vậy nên cặp số (0; –3) là nghiệm của hệ bất phương trình .
+ Ta có : 2.0 – (–3)= 3 > – 3 và 5. (–3) = – 15 <– 1.
Do đó cặp số (0; –3) không là nghiệm của cả hai bất phương trình 2x – y ≤ –3 và 5y ≥ –1.
Vậy nên cặp số (0; –3) không là nghiệm của hệ bất phương trình .
Vậy nên cặp số (0; –3) là nghiệm của hệ bất phương trình
Do đó ta chọn đáp án C.
Câu 7. Cho hai điểm M(1; 0) và N(–2; –1) và hệ bất phương trình . Trong hai điểm M và N, điểm nào thuộc miền nghiệm của hệ đã cho?
A. Cả M và N đều không thuộc miền nghiệm của hệ đã cho.
B. Điểm M thuộc miền nghiệm còn N không thuộc miền nghiệm của hệ đã cho.
C. Điểm M không thuộc miền nghiệm còn N thuộc miền nghiệm của hệ đã cho.
D. Cả hai điểm M và N đều thuộc miền nghiệm của hệ đã cho.
Đáp án đúng là: C
+ Ta có : 2.1 = 2 > 1 và 2. 1 + 5. 0 = 2 < 3.
Do đó cặp số (1; 0) không là nghiệm của bất phương trình 2x ≤ 1.
Suy ra cặp số (1; 0) không là nghiệm của hệ bất phương trình .
Vậy nên, điểm M(1; 0) không thuộc miền nghiệm của hệ bất phương trình
+ Ta có : 2. (–2) = –4 < 1 và 2. (–2) + 5. (–1) = –9 < 3.
Do đó cặp số (–2; –1) là nghiệm của của hai bất phương trình 2x ≤ 1 và 2x + 5y < 3.
Suy ra cặp số (–2; –1) là nghiệm của hệ bất phương trình .
Vậy nên, điểm N(–2; –1) thuộc miền nghiệm của hệ bất phương trình .
Do đó điểm M không thuộc miền nghiệm, điểm N thuộc miền nghiệm của hệ đã cho. Vậy ta chọn đáp án C.
Quảng cáo
Câu 8. Miền nghiệm của hệ bất phương trình là miền không gạch chéo (không kể bờ) của hình vẽ nào trong các hình vẽ sau?
A.
B.
C.
D.
Đáp án đúng là: D
+ Ta có 0 – 1= –1 < 0 nên điểm (0 ; 1) thuộc miền nghiệm của bất phương trình x – y < 0 .
Do đó miền nghiệm của bất phương trình x – y < 0 là nửa mặt phẳng bờ là đường thẳng x – y = 0, chứa điểm (0; 1) (không chứa bờ).
+ Ta có 0 + 3.0 = 0 > –1 nên điểm O(0 ; 0) thuộc miền nghiệm của bất phương trình x + 3y > –1 .
Do đó miền nghiệm của bất phương trình x + 3y > –1 là nửa mặt phẳng bờ là đường thẳng x + 3y = –1, chứa điểm O (không chứa bờ).
+ Ta có 0 + 0 = 0 < 3 nên điểm O(0 ; 0) thuộc miền nghiệm của bất phương trình x + y < 3.
Do đó miền nghiệm của bất phương trình x + y < 3 là nửa mặt phẳng có bờ là đường thẳng x + y = 3, chứa điểm O (không chứa bờ).
Ta có hình ảnh biểu diễn miền nghiệm của hệ là miền không gạch chéo trong hình sau:
Do đó ta chọn đáp án D.
Câu 9. Miền không gạch chéo trong hình vẽ dưới đây (không chứa bờ), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
A.
B.
C.
D.
Đáp án đúng là: B
Đường thẳng x – y = –2 chia mặt phẳng tọa độ thành hai nửa mặt phẳng.
Xét điểm O(0; 0), ta có : 0 – 0 = 0 > –2 .
Mặt khác điểm O thuộc miền nghiệm của hệ bất phương trình cần tìm. Do đó ta có bất phương trình thứ nhất của hệ là x – y > –2.
Đường thẳng 2x – y = 1 chia mặt phẳng tọa độ thành hai nửa mặt phẳng.
Xét điểm O(0; 0), ta có : 2.0 – 0 = 0 < 1 .
Mặt khác điểm O thuộc miền nghiệm của hệ bất phương trình cần tìm. Do đó ta có bất phương trình thứ hai của hệ là 2x – y < 1.
Suy ra hệ cần tìm là:
Ta chọn đáp án B.
Câu 10. Giá trị nhỏ nhất Fmin của biểu thức F= –x + y trên miền xác định bởi hệ là:
A. Fmin = ;
B. Fmin = 0;
C. Fmin = 2;
D. Fmin = 4.
Đáp án đúng là: A
Ta biểu diễn miền nghiệm của hệ đã cho trên mặt phẳng tọa độ, ta được hình ảnh sau:
Khi đó miền tam giác EGH (bao gồm cả biên) là miền nghiệm của hệ bất phương trình đã cho.
Các đỉnh E, H, G có tọa độ: E(–1; 3); H(; ); G(2; 6).
Ta tính giá trị của F = –x + y tại các đỉnh của tam giác EGH.
Tại E(–1; 3) ta có F = –(–1) + 3 = 4;
Tại H(; ) ta có F = – + = ;
Tại G(2; 6) ta có F = –2 + 6 = 4.
Suy ra F nhỏ nhất bằng tại H(; ), tức là Fmin = .
Ta chọn đáp án A.
Câu 11. Biểu thức F = 2x + y đạt giá trị nhỏ nhất với điều kiện tại điểm có toạ độ là:
A. (0; 0);
B. (; );
C. (0; –1);
D. (1; 0).
Đáp án đúng là: C
Ta biểu diễn miền nghiệm của hệ đã cho trên mặt phẳng tọa độ, ta được hình ảnh sau:
Khi đó miền tứ giác OABC (bao gồm cả các cạnh) là miền nghiệm của hệ bất phương trình đã cho.
Các đỉnh O, A, B, C có tọa độ: O(0; 0); A(1; 0); B(; ); C(0; –1).
Ta tính giá trị của F = 2x + y tại các đỉnh của tứ giác OABC.
Tại O(0; 0) ta có F = 2.0 + 0 = 0;
Tại A(1; 0) ta có F = 2.1 + 0 = 2;
Tại B ta có F = 2. + = ;
Tại C(0; –1) ta có F = 2.0 + (–1) = –1;
Suy ra F = 2x + y nhỏ nhất tại C(0; –1), với Fmin = –1.
Do đó ta chọn đáp án C.
Câu 12. Một người nông dân dự định quy hoạch x sào đất trồng rau cải và y sào đất trồng cà chua. Biết rằng người nông dân chỉ có tối đa 900 nghìn đồng để mua hạt giống và giá tiền hạt giống cho mỗi sào đất trồng rau cải là 100 nghìn đồng, mỗi sào đất trồng cà chua là 50 nghìn đồng. Trong các hệ bất phương trình sau, hệ nào mô tả các ràng buộc đối với x, y ?
A. ;
B. ;
C. ;
D. .
Đáp án đúng là: B
Do x, y lần lượt là số sào đất trồng rau cả và cà chua nên hiển nhiên ta có: x ≥ 0 và y ≥ 0.
Số tiền dùng để mua hạt giống cho x sào đất trồng rau cải là : 100x nghìn đồng.
Số tiền dùng để mua hạt giống cho y sào đất trồng cà chua là : 50y nghìn đồng.
Tổng số tiền người nông dân dùng mua hạt giống là: 100x + 50y nghìn đồng.
Do người nông dân chỉ có tối đa 900 nghìn đồng để mua hạt giống nên ta có :
100x + 50y ≤ 900 ⇔ 2x + y ≤ 18.
Vậy ta có hệ bất phương trình mô tả ràng buộc đối với x, y là : .
Vậy ta chọn đáp án B.
Câu 13. Cho hệ . Giá trị lớn nhất của biểu thức P = x – y trên miền nghiệm của hệ đã cho là:
A. – 1;
B. ;
C. 2;
D. 1
Đáp án đúng là: C
Ta biểu diễn miền nghiệm của hệ đã cho trên mặt phẳng tọa độ, ta được hình ảnh sau:
Khi đó miền tam giác ABC (bao gồm các cạnh) là miền nghiệm của hệ bất phương trình đã cho.
Các đỉnh A, B, C có tọa độ: A(0; 1); B(0; –2); C.
Ta tính giá trị của P = x – y tại các đỉnh của tam giác tam giác ABC.
Tại A(0; 1) ta có P = 0 – 1= – 1;
Tại B(0; –2) ta có P = 0 – (– 2) = 2;
Tại C ta có P = – = ;
Suy ra P = x – y lớn nhất bằng 2 tại B(0; –2).
Do đó ta chọn đáp án C.
Câu 14. Cho hệ bất phương trình có tập nghiệm là S. Trong các khẳng định sau, khẳng định nào đúng?
A. (0; 1) ∈ S;
B. (0; –1) ∉ S;
C. ∈ S;
D. ∉ S.
Đáp án đúng là: B
+ Ta có 0 – 1 = –1 < 1 nên (0; 1) không là nghiệm của bất phương trình x – y > 1.
Do đó (0; 1) không là nghiệm của hệ .
Suy ra (0; 1) ∉ S. Vậy khẳng định A là sai.
+ Ta có 0 – (– 1) = 1 nên (0; –1) không là nghiệm của bất phương trình x – y > 1.
Do đó (0; –1) không là nghiệm của hệ .
Suy ra (0; –1) ∉ S. Vậy khẳng định B là đúng.
+ Ta có – 1 = < 1 nên (; 1) không là nghiệm của bất phương trình x – y > 1.
Do đó (; 1) không là nghiệm của hệ .
Suy ra (; 1) ∉ S. Vậy khẳng định C là sai.
+ Ta có – ()= 2 > 1 và nên (; ) là nghiệm của cả hai bất phương trình x – y > 1 và .
Do đó (; ) là nghiệm của hệ .
Suy ra (; ) ∈ S. Vậy khẳng định D là sai.
Vậy ta chọn đáp án B.
Câu 15. Một công ty dự định sản xuất hai loại sản phẩm I và II. Các sản phẩm này được chế tạo từ hai loại nguyên liệu A, B. Số kilôgam dự trữ từng loại nguyên liệu và số kilôgam từng loại cần dùng để sản xuất 1 kg sản phẩm được cho trong bảng sau :
Loại nguyên liệu
Số kilôgam nguyên liệu dự trữ
Số kilôgam nguyên liệu cần dùng sản xuất 1 kg sản phẩm
I
II
A
8
2
1
B
12
2
2
Công ty đó nên sản xuất bao nhiêu sản phẩm mỗi loại để tiền lãi thu về lớn nhất ? Biết rằng, mỗi kilogam sản phẩm loại I lãi 10 triệu đồng, mỗi sản phẩm loại II lãi 20 triệu đồng.
A. 5 kg loại I và 1 kg loại II;
B. 5 kg loại I và 5 kg loại II;
C. 6 kg loại I và 0 kg loại II;
D. 0 kg loại I và 6 kg loại II;
Đáp án đúng là: D
Gọi x (kg) là khối lượng sản phẩm I, y (kg) là khối lượng sản phẩm II mà công ty sản xuất. Hiển nhiên x ≥ 0 và y ≥ 0.
Số nguyên liệu A cần dùng để sản xuất ra x kg sản phẩm I là 2x (kg).
Số nguyên liệu A cần dùng để sản xuất ra y kg sản phẩm II là y (kg).
Tổng nguyên liệu loại I cần dùng là 2x + y (kg).
Mặt khác, số nguyên liệu dự trữ loại I là 8 kg, nên ta có bất phương trình : 2x + y ≤ 8.
Tương tự, số nguyên liệu B cần dùng để sản xuất ra x kg sản phẩm I là 2x (kg).
Số nguyên liệu B cần dùng để sản xuất ra y kg sản phẩm II là 2y (kg).
Tổng nguyên liệu loại II cần dùng là 2x + 2y (kg).
Số nguyên liệu dự trữ loại II là 12 kg, nên ta có bất phương trình : 2x + 2y ≤ 12, tức là x + y ≤ 6.
Vậy ta có hệ bất phương trình sau :
Biểu diễn miền nghiệm của hệ này trên mặt phẳng tọa độ Oxy ta được hình sau :
Miền nghiệm của hệ là miền tứ giác OMPN (bao gồm các cạnh) với các đỉnh O(0 ; 0) ; M (0 ; 6) ; P(2 ; 4) ; N(4 ; 0).
Gọi F là số tiền lãi thu được (đơn vị : triệu đồng) , ta có :
Tiền lãi thu được từ x kg sản phẩm loại I là : 10x (triệu đồng) .
Tiền lãi thu được từ y kg sản phẩm loại II là : 20y (triệu đồng).
Khi đó F = 10x + 20y
Tính giá trị của F tại các đỉnh của tứ giác OMPN:
Tại O (0 ; 0) : F = 10.0 +20.0 = 0 ;
Tại M(0 ; 6) : F = 10 . 0 + 20 . 6 = 120 ;
Tại P(2 ; 4) : F = 10 . 2 + 20 . 4= 90;
Tại N(4 ; 0): F = 10 . 4 + 20 . 0 = 40.
F đạt lớn nhất bằng 120 tại M(0 ; 6).
Vậy công ty nên sản xuất 0 kg sản phẩm loại I và 6 kg sản phẩm loại II để thu về tiền lãi lớn nhất.
Ta chọn đáp án D.
Phần II. Trắc nghiệm đúng, sai
Câu hỏi. Cho hệ bất phương trình:
a) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.
b) là một nghiệm của hệ bất phương trình trên.
c) là một nghiệm của hệ bất phương trình trên.
d) là một nghiệm của hệ bất phương trình trên.
a) Đúng. Hệ đã cho là một hệ bất phương trình bậc nhất hai ẩn.
b) Đúng. Thay vào hệ bất phương trình ta được:
(đúng).
Vậy là một nghiệm của hệ bất phương trình đó.
c) d) Sai. Tương tự, ta thay các cặp số và vào hệ bất phương trình ta thấy không thỏa mãn, vậy đây không phải là các nghiệm của hệ bất phương trình.
Phần III. Trắc nghiệm trả lời ngắn
Câu 1. Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm I và II. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là bao nhiêu triệu đồng?
Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.
Ta có hệ bất phương trình sau: .
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là (triệu đồng).
Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.
Tại thì triệu đồng.
Tại thì triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.
Đáp án: 32.
Câu 2. Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Tính hiệu số a - b.
Gọi x, y lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế .
Để pha chế x lít nước cam cần 30x g đường, x lít nước và x g hương liệu.
Để pha chế y lít nước táo cần 10y g đường, y lít nước và 4y g hương liệu.
Theo bài ra ta có hệ bất phương trình: .
Số điểm đạt được khi pha x lít nước cam và y lít nước táo là . Bài toán trở thành tìm x, y để đạt giá trị lớn nhất.
Ta biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ như sau:
Miền nghiệm là ngũ giác ABCDE.
Tọa độ các điểm: ,, , , .
sẽ đạt giá trị lớn nhất, giá trị nhỏ nhất tại các đỉnh của miền nghiệm nên thay tọa độ các điểm vào biểu thức ta được: