Với 18 bài tập trắc nghiệm Dấu của tam thức bậc hai Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ
các mức độ, có đúng sai, trả lời ngắn sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
Câu 1. Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x2 + 12x + 36 là:
Quảng cáo
A.
B.
C.
D.
Đáp án đúng là: C
Xét phương trình f(x) = x2 + 12x + 36 = 0 = – 6 và a = 1 > 0.
Ta có bảng xét dấu
Đáp án đúng là C
Câu 2. Tam thức y = x2 – 12x – 13 nhận giá trị âm khi và chỉ khi
A. ;
B. ;
C. – 13 < x < 1;
D. – 1 < x < 13;
Đáp án đúng là: D
Xét x2 – 12x – 13 = 0 ⇔
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có tam thức y = x2 – 12x – 13 nhận giá trị âm khi
– 1 < x < 13.
Vậy đáp án đúng là D
Quảng cáo
Câu 3. Tam thức nào sau đây nhận giá trị âm với mọi x < 2
A. y = x2 – 5x + 6 ;
B. y = 16 – x2 ;
C. y = x2 – 2x + 3;
D. y = – x2 + 5x – 6.
Đáp án đúng là: D
Xét đáp án A: y = x2 – 5x +6
Xét x2 – 5x +6 = 0
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có tam thức y = x2 – 5x + 6 nhận giá trị âm khi 2 < x < 3.
Vậy đáp án A sai.
Xét đáp án B: y = 16 – x2
Xét 16 – x2 = 0 ⇔
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có tam thức y = 16 – x2 xét trên khoảng (– ∞; 2) nhận giá trị âm khi trên khoảng (– ∞; – 4) nhận giá trị dương trên khoảng (– 4; 2).
Vậy đáp án B sai.
Xét đáp án C: y = x2 – 2x + 3
Xét x2 – 2x + 3 = 0 ⇔ Phương trình vô nghiệm
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có tam thức y = x2 – 2x + 3 nhận giá trị dương với mọi x ∈ ℝ
Vậy đáp án C sai.
Xét đáp án D: y = – x2 + 5x – 6.
Xét – x2 + 5x – 6 = 0
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có tam thức y = – x2 + 5x – 6 nhận giá trị âm khi x ∈ (-∞; 2) ∪ (3; +∞)
Vậy đáp án D đúng.
Câu 4. Phương trình x2 – 2(m – 1)x + m – 3 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi
A. m < 3;
B. m < 1;
C. m = 1;
D. 1 < m < 3.
Đáp án đúng là: C
x2 – 2(m – 1)x + m – 3 = 0 có 2 nghiệm đối nhau khi
.
Xét biểu thức m2 – 3m + 4 = + > 0 với mọi m
Vậy phương trình có 2 nghiệm đối dấu khi m = 1.
Đáp án đúng là C.
Câu 5. Phương trình x2 + x + m = 0 vô nghiệm khi và chỉ khi:
Quảng cáo
A. ;
B. ;
C. ;
D. ;
Đáp án đúng là: C
x2 + x + m = 0 vô nghiệm khi ∆ < 0
Ta có ∆ = 12 – 4.1.m < 0
Vậy đáp án đúng là C.
Câu 6. Các giá trị m làm cho biểu thức f(x) = x2 + 4x + m – 5 luôn dương là:
A. m < 9;
B. m ≥ 9;
C. m > 9;
D. m ∈ ∅
Đáp án đúng là: C
Ta có: f(x) = x2 + 4x + m – 5 luôn luôn dương ⇔ x2 + 4x + m – 5 > 0 với mọi x ∈ ℝ
Vậy đáp án đúng là C.
Câu 7. Cho hàm số f(x) = mx2 – 2mx + m + 1. Giá trị của m để f(x) > 0, ∀ x ∈ ℝ.
A. m ≥ 0 ∀ x ∈ ℝ
B. m > 0
C. m < 0
D. m ≤ 0
Đáp án đúng là:A
TH1. m = 0. Khi đó: f(x) = 1 > 0 .
TH2. m ≠ 0. Khi đó:
f(x) = mx2 – 2mx + m + 1 > 0 ∀ x ∈ ℝ ⇔
Vậy m ≥ 0 thỏa mãn bài toán.
Quảng cáo
Câu 8. Tập nghiệm của bất phương trình x2 + 4x + 4 > 0 là:
A. (2; + ∞);
B. ℝ;
C. ;
D. ;
Chọn C
Xét x2 + 4x + 4 = 0 x = – 2.
Ta có bảng xét dấu
Dựa vào bảng xét dấu tập nghiệm của bất phương trình là .
Câu 9. Tìm tập xác định của hàm số y = .
A.
B. D = [2; + ∞)
C. D =
D. D =
Đáp án đúng là: C
Hàm số xác định khi và chỉ khi 2x2 – 5x + 2 ≥ 0
Xét 2x2 – 5x + 2 = 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có 2x2 – 5x + 2 ≥ 0
Vậy đáp án đúng là C.
Câu 10. Tập ngiệm của bất phương trình: x(x + 5) ≤ 2(x2 + 2) là:
A.
B.
C.
D.
Đáp án đúng: A
Ta có: x(x + 5) ≤ 2(x2 + 2) x2 – 5x + 4 ≥ 0
Đặt f(x) = x2 – 5x + 4 ta có f(x) = 0
Ta có bảng xét dấu :
Dựa vào bảng xét dấu nghiệm của bất phương trình
Câu 11. Bất phương trình: có bao nhiêu nghiệm nguyên dương?
A. 0;
B. 1;
C. 2;
D. 3.
Đáp án đúng là: B
Ta có điều kiện: x2 – 5 ≥ 0
Vậy ⇔ x2 – 3x – 4 < 0.
Xét x2 – 3x – 4 = 0
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có x2 – 3x – 4 < 0 – 1 < x < 4
Kết hợp với điều kiện ta được: . Suy ra nghiệm nguyên dương của bất phương trình đã cho là: x = 3.
Câu 12. Tìm tất cả các giá trị của a để bất phương trình ax2 – x + a ≥ 0, ∀ x ∈ ℝ
A. a = 0;
B. a < 0;
C. ;
D. ;
Đáp án đúng là: D
ax2 – x + a ≥ 0, ∀ x ∈ ℝ ⇔ ⇔
Xét tam thức bậc hai f(a) = 1 – a2, có ∆ = 02 – 4.(-4).1 = 16 > 0. Do đó f(a) có hai nghiệm phân biệt và
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có 1 – 4a2 ≤ 0
Kết hợp với điều kiện a > 0 suy ra a ∈
Vậy để ax2 – x + a ≥ 0, thì a ∈ hay a ≥.
Câu 13. Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì
A. – 3 ≤ m ≤ 9;
B.
C. – 3 < m < 9;
D.
Đáp án đúng là: C
Ta có f(x) > 0 với ∀ x ∈ ℝ
Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.
Ta có bảng xét dấu
Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.
Vậy đáp án đúng là C.
Câu 14. Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm
A. ;
B. – 22 ≤ m ≤ 2;
C. – 22 < m < 2;
D. ;
Đáp án đúng là: B
Ta có f(x) > 0 vô nghiệm .
Xét m = 3 ta có f(x) = 5x – 4 với thì f(x) > 0 nên m = 3 không thỏa mãn.
Xét m ≠ 3 ta có f(x) ≤ 0 ∀ x ∈ ℝ
Xét tam thức bậc hai (biến m): m2 + 20m – 44 có ∆’ = 102 – (-44) = 144 > 0. Do đó tam thức có hai nghiệm phân biệt x = -22 và x = 2.
Ta có bảng xét dấu
Để f(x) ≤ 0 ∀ x ∈ ℝ
Vậy đáp án đúng là B.
Câu 15. Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng ∀ x ≥ 3?
A. m ≥ – 11;
B. m > – 11;
C. m < – 11;
D. m < 11;
Đáp án đúng là: B
Ta có: a = 2 > 0. Do đó, 2x2 – 4x + m + 5 > 0, sẽ có trường hợp sau:
Trường hợp 1. ∆ < 0 (– 4)2 – 4.2.(m + 5) < 0 m > – 3, khi đó
2x2 – 4x + m + 5 > 0 với
Do đó 2x2 – 4x + m + 5 > 0 với
Trường hợp 2. ∆ ≥ 0, khi đó phương trình 2x2 – 4x + m + 5 = 0 sẽ có hai nghiệm x1; x2.
Do đó, để 2x2 – 4x + m + 5 > 0 ,
Kết hợp hai trường hợp lại ta được m > – 11 thì thì 2x2 – 4x + m + 5 > 0 với ∀ x ≥ 3.
Phần II. Trắc nghiệm đúng, sai
Câu hỏi. Cho hàm số .
a) .
b) là tam thức bậc hai khi và chỉ khi .
c) khi và chỉ khi .
d) Hàm số luôn nhận giá trị dương khi .
a) Đúng. Ta có .
b) Đúng. là tam thức bậc hai khi và chỉ khi , tức là .
c) Sai. Ta có .
Do đó khi , tức là .
d) Sai. Thay vào , ta được , ta thấy không thể nhận giá trị dương với mọi .
Ta có .
Với hàm số là tam thức bậc hai, do đó khi , suy ra , suy ra .
Vậy hàm số luôn nhận giá trị dương khi .
Phần III. Trắc nghiệm trả lời ngắn
Câu 1. Có bao nhiêu giá trị nguyên của tham số để hàm số có tập xác định là .
Để hàm số có tập xác định là thì đúng , điều này xảy ra khi và chỉ khi .
Ta có và .
Tam thức có hai nghiệm và và hệ số của bằng 4 lớn hơn 0 nên khi .
Mà nên .
Vậy có 2 giá trị nguyên của m thỏa mãn.
Đáp án: 2.
Câu 2. Có bao nhiêu giá trị nguyên dương của tham số để không dương với mọi .