Bài 1 trang 36 Toán 12 Tập 1 Chân trời sáng tạo

Giải Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản - Chân trời sáng tạo

Bài 1 trang 36 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:

Quảng cáo

a) y = x3 + x – 2;

b) y = 2x3 + x212x – 3. 

Lời giải:

a) y = x3 + x – 2

1. Tập xác định: ℝ.

2. Sự biến thiên:

● Chiều biến thiên:

Đạo hàm y' = 3x2 + 1; y' > 0 với mọi x ∈ ℝ.

Do đó, hàm số đồng biến trên khoảng (– ∞; + ∞).

● Các giới hạn tại vô cực:

limxy=limxx31+1x22x3=;  limx+y=limx+x31+1x22x3=+

● Bảng biến thiên:

Bài 1 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

3. Đồ thị:

Khi x = 0 thì y = – 2 nên (0; – 2) là giao điểm của đồ thị với trục Oy.

Ta có y = 0 ⇔ x3 + x – 2 = 0 ⇔ x = 1.

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1; 0).

Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.

Bài 1 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Đồ thị của hàm số có tâm đối xứng là điểm I(0; – 2).

b) y = 2x3 + x212x – 3

1. Tập xác định: ℝ.

2. Sự biến thiên:

● Chiều biến thiên:

Đạo hàm y' = 6x2 + 2x – 12; y' = 0 ⇔ x = 12 hoặc x = 16.

Trên các khoảng ;1216;+, y' > 0 nên hàm số đồng biến trên mỗi khoảng đó.

Trên khoảng 12;16, y' < 0 nên hàm số nghịch biến trên khoảng đó.

● Cực trị:

Hàm số đạt cực đại tại x=12 và y = 114.

Hàm số đạt cực tiểu tại x = 16 và yCT = 329108.

● Các giới hạn tại vô cực:

limxy=limxx32+1x12x23x3=;  limx+y=limx+x32+1x12x23x3=+

● Bảng biến thiên:

Bài 1 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

3. Đồ thị:

Khi x = 0 thì y = – 3 nên (0; – 3) là giao điểm của đồ thị với trục Oy.

Ta có y = 0 ⇔ 2x3 + x212x – 3 = 0, phương trình này có 1 nghiệm nên đồ thị của hàm số giao với trục Ox tại 1 điểm.

Điểm 12;114 là cực đại và điểm 16;329108 là điểm cực tiểu của đồ thị hàm số.

Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.

Bài 1 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Đồ thị của hàm số có tâm đối xứng là điểm I16;313108.

Quảng cáo

Lời giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Chân trời sáng tạo khác
Tài liệu giáo viên