Bài 5 trang 36 Toán 12 Tập 1 Chân trời sáng tạo

Giải Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản - Chân trời sáng tạo

Bài 5 trang 36 Toán 12 Tập 1: Cho hàm số y=x2+3x+1x+2.

Quảng cáo

a) Khảo sát và vẽ đồ thị của hàm số đã cho.

b) Tìm tọa độ trung điểm đoạn nối hai điểm cực trị của đồ thị hàm số. Có nhận xét gì về điểm này?

Lời giải:

a) Xét hàm số y=x2+3x+1x+2.

1. Tập xác định: D = ℝ\{– 2}.

2. Sự biến thiên:

● Chiều biến thiên:

Đạo hàm y' = x24x+5x+22. Ta có y' = 0 ⇔ x = – 5 hoặc x = 1.

Trên các khoảng (– ∞; – 5) và (1; + ∞), y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó.

Trên các khoảng (– 5; – 2) và (– 2; 1), y' > 0 nên hàm số đồng biến trên mỗi khoảng đó.

● Cực trị:

Hàm số đạt cực tiểu tại x = – 5 và yCT = 13.

Hàm số đạt cực đại tại x = 1 và y = 1.

● Các giới hạn tại vô cực và tiệm cận:

limxy=limxx2+3x+1x+2=+;  limx+y=limx+=x2+3x+1x+2=

Ta có a=limx+x2+3x+1xx+2=1b=limx+x2+3x+1x+21x=limx+5x+1x+2=5.

Suy ra đường thẳng y = – x + 5 là tiệm cận xiên của đồ thị hàm số.

Ta có limx2y=limx2x2+3x+1x+2=+;  limx2+y=limx2+x2+3x+1x+2=.

Suy ra đường thẳng x = – 2 là tiệm cận đứng của đồ thị hàm số.

● Bảng biến thiên:

Bài 5 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

3. Đồ thị:

Đồ thị hàm số giao với trục Oy tại điểm 0;12.

Đồ thị hàm số cắt trục Ox tại 2 điểm và đi qua các điểm (– 5; 13), (1; 1).

Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.

Bài 5 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Tâm đối xứng của đồ thị hàm số là điểm I(– 2; 7).

Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = – 2 và y = – x + 5. 

b) Hai điểm cực trị của đồ thị hàm số là (– 5; 13) và (1; 1).

Ta có 5+12=213+12=7. Vậy tọa độ trung điểm của đoạn nối hai điểm cực trị của đồ thị hàm số là (– 2; 7), đây chính là tâm đối xứng I của đồ thị hàm số.

Bài 5 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Vậy trung điểm của đoạn nối hai điểm cực trị của đồ thị hàm số trùng với tâm đối xứng của đồ thị hàm số.

Quảng cáo

Lời giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Chân trời sáng tạo khác
Tài liệu giáo viên