Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Với tóm tắt lý thuyết Toán 8 Bài 15: Định lí Thalès trong tam giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 8 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Quảng cáo

Lý thuyết Định lí Thalès trong tam giác

1. Đoạn thẳng tỉ lệ

- Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

Ví dụ: Tìm tỉ số của các cặp đoạn thẳng có độ dài như sau:

a) AB = 2 cm và CD = 4 cm.

b) MN = 15 cm và PQ = 45 cm.

Hướng dẫn giải

a) Ta có: ABCD  =  24  =  12 .

b) Ta có: MNPQ  =  1545  =  13 .

- Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A'B' và C'D' nếu có tỉ lệ thức:

ABCD  =  A'B'C'D'  hay   ABA'B'  =  CDC'D'.

Quảng cáo

Ví dụ: Cho tam giác ABC, AB = 4 cm, AC = 6 cm. Gọi M, N lần lượt là trung điểm của AB và AC. Hãy tính tỉ số AMAB  và  ANAC .

Hướng dẫn giải

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Vì M là trung điểm của AB nên AM = MB = 12AB  = 2 cm

N là trung điểm của AC nên AN = NC = 12AC  = 3 cm

AMAB  =  24  =  12

ANAC  =  36  =  12

Ta thấy: AMAB  =  ANAC  =  12 .

2. Định lí Thalès trong tam giác

Quảng cáo

2.1. Định lí Thalès

Định lí Thalès: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Ví dụ: Tính độ dài AQ trong hình dưới đây biết PQ // BC, AP = 3 cm, PB = 9 cm, QC = 6 cm.

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Xét ∆ABC có PQ // BC nên theo định lí Thalès, ta có: APPB ​ = ​  AQQC​   ​​  hay     39​  =​  AQ6

Suy ra: AQ = 3.69  =  2 cm.

2.2. Định lí Thalès đảo

Định lí Thalès đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Ví dụ: Quan sát hình dưới đây, chứng minh PQ // BC.

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Quảng cáo

Hướng dẫn giải

Trong ∆ABC, ta có: APPB​  = ​  AQQC  =  13 .

Áp dụng định lí Thalès đảo

Suy ra: PQ // BC.

Bài tập Định lí Thalès trong tam giác

Bài 1: Tìm độ dài x cho hình vẽ sau biết MN // BC.

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Hướng dẫn giải

Ta có: AB = AM + MB = 2 + 3 = 5.

Áp dụng định lí Thalès trong tam giác ABC có MN // BC

Ta có: AMAB​  =​  ANAC  ⇒ 25​  =​  1,5x⇒ x = 5.1,52  = 3,75.

Vậy x = 3,75.

Bài 2: Cho tam giác ABC vuông tại A có AB = 6 cm, BC = 10 cm. Trên đoạn thẳng AB lấy điểm M sao cho AM = 2 cm. Dựng đường thẳng MN vuông góc AB. Tính BN.

Hướng dẫn giải

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Ta có: AM + MB = AB, suy ra MB = AB – AM = 6 – 2 = 4 (cm).

Ta thấy: MN vuông góc với AB (gt) và AC vuông góc với AB (do tam giác ABC vuông tại A)

Suy ra: MN // AC.

Áp dụng định lí Thalès trong ∆ABC, ta có:

BMAB  =  BNBC⇒ BN = BMBCAB  =  4  106  =  203 (cm)

Vậy BN = 203 cm.

Bài 3: Tìm các cặp đường thẳng song song trong hình vẽ dưới đây và giải thích vì sao chúng song song với nhau?

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Hướng dẫn giải

Ta có: ECAE  =  2,52  =  54

DCBD  =  32,4  =  54

Suy ra ECAE=DCBD .

Áp dụng định lí Thalès đảo trong tam giác ABC.

Do đó, DE // AB.

Bài 4: Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho BC = 2BD. Trên đoạn AD lấy điểm O sao cho AOOD  =  32 . Gọi I là giao điểm của CO và AB. Tính tỉ số AIIB .

Hướng dẫn giải

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Kẻ thêm DH // CI (H thuộc AB) thì DH // IO.

Áp dụng định lí Thalès vào ∆ADH có DH // IO, ta có:

Định lí Thalès trong tam giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Ta có: BD + DC = BC, suy ra DC = BC – BD = 2BD – BD = BD nên BC = 2DC.

Áp dụng định lí Thalès vào ∆BIC có DH // IC, ta có:

BIIH  =  BCCD  =2⇒ BI = 2IH = 2 . 2t = 4t

Vậy AIIB  =  3t4t  =  34 .

Học tốt Định lí Thalès trong tam giác

Các bài học để học tốt Định lí Thalès trong tam giác Toán lớp 8 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 8 Kết nối tri thức hay khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Kết nối tri thức (Tập 1 & Tập 2) (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Kết nối tri thức khác
Tài liệu giáo viên