Lớp 12: Bí kíp đạt ít nhất 24 điểm thi THPT Quốc Gia. Xem ngay!

60 bài tập trắc nghiệm Viết phương trình mặt cầu chọn lọc có đáp án chi tiết (phần 2)



60 bài tập trắc nghiệm Viết phương trình mặt cầu chọn lọc có đáp án chi tiết (phần 2)

Bài 21: Cho điểm I(1;0;0) và đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB=4 là:

   A. (x - 1)2 + y2 + z2 = 9.

   B. (x - 1)2 + y2 + z2 = 3.

   C. (x + 1)2 + y2 + z2 = 3.

   D. (x + 1)2 + y2 + z2 = 9.

Đáp án : A

Giải thích :

Đường thẳng (d) đi qua điểm M (1; l; -2) và có vecto chỉ phương u=(1;2;1)

IM=(0;1; -2) ⇒ [IM ; u ]=(5; -2; -1)

Khoảng cách từ I đến đường thẳng d là:

h =d(I;d)Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi R là bán kính của mặt cầu. Ta có:

R2 =h2 +(AB/2)2 =5 +22 =9

Vậy phương trình mặt cầu cần tìm là:

(x-1)2 +y2 +z2 =9

Bài 22: Cho điểm I(1;0;0) và đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

   A. (x - 1)2 + y2 + z2 = 16/4.

   B. (x + 1)2 + y2 + z2 = 20/3.

   C. (x - 1)2 + y2 + z2 = 20/3.

   D. (x - 1)2 + y2 + z2 = 5/3.

Đáp án : C

Giải thích :

Đường thẳng (d) đi qua điểm M (1; l; -2) và có vecto chỉ phương u=(1;2;1)

IM=(0;1; -2) ⇒ [IM ; u ]=(5; -2; -1)

Khoảng cách từ I đến đường thẳng d là:

h =d(I;d)Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Do tam giác IAB đều nên ta có:

h =(IA√3)/2 ⇒ √5=(R√3)/2 ⇒ R=(2√15)/3

Vậy phương trình mặt cầu là

(x-1)2 +y2 +z2 =20/3

Bài 23: Cho điểm I(1;1;-2) đường thẳngToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho IABˆ = 300 là:

   A. (x + 1)2 + (y + 1)2 + (z - 2)2 = 36.

   B. (x - 1)2 + y - 1)2 + (z + 2)2 = 72.

   C. (x - 1)2 + (y - 1)2 + (z + 2)2 = 66.

   D. (x + 1)2 + (y + 1)2 + (z - 2)2 = 46.

Đáp án : B

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi H là chân đường vuông góc của I trên AB

Xét tam giác AHI vuông tại H, AI = R có:

IH=AI.sin⁡(IABˆ) =R.sin⁡(300)=R/2

Điểm M (-1; 3; 2) ∈d

IM=(-2;2; 4)

Đường thẳng Δ có một vecto chỉ phương là u=(1; 2;1)

Ta có: [IM ; u ]=(-6;6;-6)

⇒ d(I,Δ)Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Ta có: IH = d(I,Δ)

⇒ R/2=3√2 ⇒ R=6√2

Vậy phương trình mặt cầu cần tìm là:

(x-1)2 +(y-1)2 +(z+2)2 =72

Bài 24: Phương trình mặt cầu có tâm I(3; √3; -7) và tiếp xúc trục tung là:

   A. (x + 3)2 + (y + √3)2 + (z - 7)2 = 58.

   B. (x - 3)2 + (y - √3)2 + (z + 7)2 = 61.

   C. (x - 3)2 + (y - √3)2 + (z + 7)2 = 58.

   D. (x - 3)2 + (y - √3)2 + (z + 7)2 = 12.

Đáp án : C

Giải thích :

Khoảng cách từ điểm I đến trục Oy là

d= √(32 +72) =58

Do mặt cầu tiếp xúc với Oy nên R = d

Vậy phương trình mặt cầu cần tìm là

(x -3)2 +(y -√3)2 +(z+7)2 =72

Bài 25: Phương trình mặt cầu có tâm I(√5; 3; 9) và tiếp xúc trục hoành là:

   A. (x - √5)2 + (y - 3)2 + (z - 9)2 = 90.

   B. (x - √5)2 + (y - 3)2 + (z - 9)^} = 14.

   C. (x + √5)2 + (y + 3)2 + (z + 9)2 = 86.

   D. (x + √5)2 + (y + 3)2 + (z + 9)2 = 90.

Đáp án : A

Giải thích :

Khoảng cách từ điểm I đến trục Ox là

d=√(32 +92)=90

Do mặt cầu tiếp xúc với Ox nên R = d

Vậy phương trình mặt cầu cần tìm là

(x -√5)2 +(y-3)2 +(z-9)2 =72

Bài 26: Phương trình mặt cầu có tâm I(-√6; -√3; √2 -1) và tiếp xúc trục Oz là:

   A. (x + √6)2 + (y + √3)2 + (z - √2 + 1)2 = 3.

   B. (x + √6)2 + (y + √3)2 + (z - √2 - 1)2 = 9.

   C. (x + √6)2 + (y + √3)2 + (z - √2 - 1)2 = 3.

   D. (x + √6)2 + (y + √3)2 + (z - √2 + 1)2 = 9.

Đáp án : D

Giải thích :

Khoảng cách từ I đến trục Oz là

d=√(6+3)=9

Do mặt cầu tiếp xúc với Ox nên R = d

Vậy phương trình mặt cầu cần tìm là

(x -√6)2 +(y-√3)2 +(z-√2+1)2 =9

Bài 27: Phương trình mặt cầu có tâm I(4;6;-1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông là:

   A. (x - 4)2 + (y - 6)2 + (z + 1)2 = 26.

   B. (x - 4)2 + (y - 6)2 + (z + 1)2 = 74.

   C. (x - 4)2 + (y - 6)2 + (z + 1)2 = 34.

   D. (x - 4)2 + (y - 6)2 + (z + 1)2 = 104.

Đáp án : B

Giải thích :

Khoảng cách từ I đến trục Ox là:

h =√(62 +1)=√37

Vì tam giác IAB cân tại I nên tam giác IAB vuông cân tại I

Gọi R là bán kính mặt cầu ⇒ IA=IB=R;AB=R√2

Ta có: IA . IB = h . AB ⇒ R2 =√37 . R√2 ⇒ R=√74

Vậy phương trình mặt cầu cần tìm là

(x-4)2 +(y-6)2 +(z+1)2 =74

Bài 28: Phương trình mặt cầu có tâm I(3;6;-4) và cắt trục Oz tại hai điểm A, B sao cho diện tích tam giác IAB bằng 6√5 là:

   A. (x - 3)2 + (y - 6)2 + (z + 4)2 = 49.

   B. (x - 3)2 + (y - 6)2 + (z + 4)2 = 45.

   C. (x - 3)2 + (y - 6)2 + (z + 4)2 = 36.

   D. (x - 3)2 + (y - 6)2 + (z + 4)2 = 54.

Đáp án : A

Giải thích :

Khoảng cách từ điểm I đến trục Oz là:

h=√(32 +62)= 3√5

Ta có:

SIAB=1/2 h . AB ⇒ AB=(2SIAB)/h =4

Gọi R là bán kính mặt cầu

⇒ R2 =h2 +(AB/2)2 =49

Phương trình mặt cầu cần tìm là:

(x-3)2 +(y-6)2 +(z+4)2 =49

Bài 29: Cho các điểm I(-1;0;0) và đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Phương trình mặt cầu (S) có tâm I và tiếp xúc d là:

   A. (x + 1)2 + y2 + z2 = 10.

   B. (x - 1)2 + y2 + z2 = 5.

   C. (x + 1)2 + y2 + z2 = 5.

   D. (x - 1)2 + y2 + z2 = 10.

Đáp án : C

Giải thích :

Đường thẳng d đi qua điểm M (2; 1; 1) và có vecto chỉ phương u=(1;2;1)

IM=(3;1;1) ⇒ [IM , u ]=(-1; -2;5)

Khoảng cách từ điểm I đến đường thẳng d là:

d(I,d)Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Do mặt cầu tiếp xúc với d nên d(I,d)=R

Vậy phương trình mặt cầu cần tìm là:

(x+1)2 +y2 +z2 =5

Bài 30: Cho các điểm A(1;3;1) và B(3;2;2). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có đường kính là:

   A. 2√6   B. √(14)

   C. 2√(10)   D. 2√(14)

Đáp án : D

Giải thích :

Gọi I là tâm của mặt cầu, do I thuộc trục Oz nên I (0; 0; c)

Mặt cầu đi qua 2 điểm A, B nên IA = IB = R

⇒ IA2 =IB2

⇔ 12 +32 +(c-1)2 =32 +22 +(c-2)2

⇔ 2c=6 ⇔ c=3

Vậy I (0; 0; 3); R= IA = √14

⇒ Đường kính của mặt cầu là 2√14

Bài 31: Cho các điểm A(0;1;3), B(2;2;1) và đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm là:

   A. (3/2; 3/2; 2)   B. (13/10; 17/10; 12/5)

   C. (4/3; 2/3; 7/3)   D. (6/5; 9/5; 13/5)

Đáp án : B

Giải thích :

Phương trình tham số của đường thẳng d:Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi I là tâm mặt cầu, do I thuộc đường thẳng d nên I(1+t;2-t;3-2t)

Mặt cầu đi qua 2 điểm A, B nên IA = IB = R

⇒ IA2 =IB2

⇔ (1+t)2 +(1-t)2 +4t2 =(t-1)2 +t2 +(2-2t)2

⇔ t=(-3)/10

⇒ I(17/10; 17/10; 12/5)

Bài 32: Cho các điểm A(-2;4;1), B(2;0;3) và đường thẳng Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Gọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng d. Bán kính mặt cầu (S) bằng:

   A. (√1169)/4   B. (√873)/4

   C. 1169/16   D. (√967)/2

Đáp án : A

Giải thích :

Phương trình tham số của đường thẳng d là: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi I là tâm của mặt cầu, do I thuộc d nên I (1+2t; -2-t; 3-2t)

Mặt khác mặt cầu đi qua A, B nên IA = IB = R

⇒ IA2 =IB2

⇔ (2t+3)2 +(t+6)2 +(2-2t)2 =(2t-1)2 +(t+2)2 +4t2

⇔ t=(-11)/4

⇒ R=IA= √(1169)/4

Bài 33: Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxy) có phương trình:

   A. (x - 2)2 + (y - 4)2 + (z - 6)2 = 36.

   B. (x - 2)2 + (y - 4)2 + (z - 6)2 = 16.

   C. (x - 2)2 + (y - 4)2 + (z - 6)2 = 4.

   D. (x - 2)2 + (y - 4)2 + (z - 6)2 = 56.

Đáp án : A

Giải thích :

Chú ý:

Khoảng cách từ điểm I (a; b; c) đến mặt phẳng (Oxy) là: d=|c|

Khoảng cách từ điểm I (a; b; c) đến mặt phẳng (Oyz) là: d=|a|

Khoảng cách từ điểm I (a; b; c) đến mặt phẳng (Oxz) là: d=|b|

Khoảng cách từ điểm I (2; 4; 6) đến mặt phẳng Oxy là d = 6

Khi đó, mặt cầu tâm I(2; 4; 6) và tiếp xúc với mặt phẳng Oxy là:

(x-2)2 +(y-4)2 +(z-6)2 =36

Bài 34: Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxz) có phương trình:

   A. (x - 2)2 + (y - 4)2 + (z - 6)2 = 36.

   B. (x - 2)2 + (y - 4)2 + (z - 6)2 = 4.

   C. (x - 2)2 + (y - 4)2 + (z - 6)2 = 16.

   D. (x - 2)2 + (y - 4)2 + (z - 6)2 = 56.

Đáp án : B

Bài 35: Trong không gian Oxyz, mặt cầu có đường kính AB với A(4; -3;7), B(2;1;3) là:

   A. (x + 3)2 + (y - 1)2 + (z + 5)2 = 9

   B. (x - 3)2 + (y + 1)2 + (z - 5)2 = 9

   C. (x + 3)2 + (y - 1)2 + (z + 5)2 = 3

   D. (x - 3)2 + (y + 1)2 + (z - 5)2 = 3

Đáp án : B

Giải thích :

Mặt cầu có đường kính AB nên trung điểm I của AB là tâm mặt cầu và

R= IA= AB/2

⇒ I(3; -1;5); R=AB/2Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=3

Vậy pt mặt cầu cần tìm là:

(x-3)2 +(y+1)2 +(z-5)2 =9

Bài 36: Trong không gian Oxyz, mặt cầu tâm I(1;2;4) tiếp xúc với mặt phẳng (α): 2x + 2y + z - 1 = 0 có phương trình là :

   A. (x + 1)2 + (y + 2)2 + (z + 4)2 = 1

   B. (x - 4)2 + (y - 2)2 + (z - 1)2 = 1

   C. (x - 1)2 + (y - 2)2 + (z - 4)2 = 9

   D. (x - 1)2 + (y - 2)2 + (z - 4)2 = 3

Đáp án : C

Giải thích :

Khoảng cách từ tâm I đến mặt phẳng (α) là :

d(I; (α))Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=3

Do mặt cầu tiếp xúc với mặt phẳng nên khoảng cách từ I đến mặt phẳng bằng R

Vậy phương trình mặt cầu là :

(x-1)2 +(y-2)2 +(z-4)2 =9

Bài 37: Trong không gian Oxyz, mặt cầu tâm I(1;1;2) và đi qua A(-2; 1; 6) có phương trình là :

   A. (x + 1)2 + (y + 1)2 + (z + 2)2 = 25

   B. (x - 1)2 + (y - 1)2 + (z - 2)2 = 5

   C. (x + 1)2 + (y + 1)2 + (z + 2)2 = 5

   D. (x - 1)2 + (y - 1)2 + (z - 2)2 = 25

Đáp án : D

Giải thích :

Gọi R là bán kính mặt cầu

⇒ R =IA = √(32 +42)=5

Vậy phương trình mặt cầu cần tìm là :

(x-1)2 +(y-1)2 +(z-2)2 =25

Bài 38: Trong không gian Oxyz, mặt cầu đi qua bốn điểm A(6; -2; 3), B(0; 1; 6), C(2; 0; -1) và D(4; 1; 0) có phương trình là:

   A. x2 + y2 + z2 - 4x + 2y - 6z - 3 = 0

   B. 2x2 + y2 + z2 - 4x + 2y - 6z - 3 = 0

   C. x2 + y2 + z2 + 4x - 2y + 6z - 3 = 0

   D. x2 + y2 + z2 - 4x + 2y - 6z + 3 = 0

Đáp án : A

Giải thích :

Gọi I (x; y; z) là tâm của mặt cầu

Do mặt cầu ngoại tiếp tứ diện ABCD nên ta có IA = IB = IC = ID

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó: R2 =IA2 =17

Phương trình mặt cầu cần tìm là:

(x-2)2 +(y+1)2 +(z-3)2 =17

⇔ x2 +y2 +z2 -4x +2y -6z -3 =0

Bài 39: Trong không gian Oxyz, cho bốn điểm A(1;1;0), B(0;1;0), C(0;0;1) và O(0;0;0). Khi đó mặt cầu ngoại tiếp tứ diện OABC có phương trình là :

   A. x2 + y2 + z2 + x + y + z = 0

   B. x2 + y2 + z2 - 2x - 2y - 2z = 0

   C. x2 + y2 + z2 - x - y - z = 0

   D. x2 + y2 + z2 + 2x + 2y + 2z = 0

Đáp án : C

Giải thích :

Gọi Phương trình mặt cầu cần tìm là

x2 +y2 +z2 -2ax -2by -2cz +d =0

Ta có : O(O;0;0)∈(S) ⇒ d=0

A(1;0;0)∈(S) ⇒ 1-2a+d=0

B(0;1;0)∈(S) ⇒ 1-2b+d=0

C(0;1;0)∈(S) ⇒ 1-2c+d=0

⇒ a=b=c=1/2

Vậy phương trình mặt cầu cần tìm là :

x2 +y2 +z2 -x -y -z =0

Bài 40: Trong không gian Oxyz, phương trình mặt cầu (S) qua ba điểm A(1; -2; 4), B(1; 3; -1), C(2; -2; -3) và có tâm nằm trên mặt phẳng Oxy là :

   A. x2 + y2 + z2 + 4x + 2y + 21 = 0

   B. x2 + y2 + z2 + 4x + 2y + 3z - 21 = 0

   C. x2 + y2 + z2 - 4x + 2y - 21 = 0

   D. x2 + y2 + z2 + 4x + 2y - 21 = 0

Đáp án : D

Giải thích :

Gọi I là tâm mặt cầu, do I nằm trên mặt phẳng (Oxy) nên I (a; b; 0)

Do mặt cầu đi qua 3 điểm A, B, C nên IA = IB = IC = R

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy I (-2 ; -1 ; 0); R=IA=√26

Phương trình mặt cầu cần tìm là:

(x+2)2 +(y+1)2 +z2 =26

⇔ x2 +y2 +z2 +4x +2y -21 =0

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 99K


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác