50 bài tập trắc nghiệm Viết phương trình mặt phẳng chọn lọc có đáp án chi tiết (phần 1)



50 bài tập trắc nghiệm Viết phương trình mặt phẳng chọn lọc có đáp án chi tiết (phần 1)

Bài 1: Trong không gian Oxyz, Phương trình mặt phẳng (P) chứa trục Ox và vuông góc với mặt phẳng (Q): 3x + y - 2z - 5 = 0 là

   A. -x +3y =0

   B. 2x +3y =0

   C. 2y -z =0

   D. 2y +z =0

Đáp án : D

Giải thích :

Trục Ox có vecto chỉ phương u=(1;0;0) và đi qua điểm O (0; 0; 0)

Mặt phẳng (Q) có vecto pháp tuyến nQ=(3;1; -2)

Do mặt phẳng (P) chứa trục Ox và vuông góc với mặt phẳng (Q) nên mặt phẳng (P) có vecto pháp tuyến là n=[u ; nQ ]=(0;2;1)

Phương trình mặt phẳng (P) có vecto pháp tuyến n và đi qua điểm O là:

2y +z =0

Bài 2: Trong không gian Oxyz, cho điểm A(1;1;1) và mặt phẳng (Q): 2x + y + 2z - 1 = 0. Mặt phẳng (P) song song với mặt phẳng (Q) và khoảng cách từ A đến mặt phẳng (P) bằng 2/3. Phương trình mặt phẳng (P) là

   A. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   B. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   C. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   D. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : A

Giải thích :

Mặt phẳng (P) song song với mặt phẳng (Q) nên phương trình mặt phẳng (P) có dạng:

2x +y +2z +D =0 (D≠ -1)

Khoảng cách từ A đến mặt phẳng (P) bằng 2/3 nên ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

⇔ |5 +D| =2

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy phương trình mặt phẳng (P) cần tìm là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 3: Trong không gian Oxyz phương trình mặt phẳng (P) đi qua điểm A(2; -1; 2) song song trục Oy và vuông góc với mặt phẳng (Q): 2x - y + 3z - 9 = 0 là

   A. 3y + z + 1 = 0

   B. x + 2y = 0

   C. 3x - 2z - 2 = 0

   D. 3x + 2y - 10 = 0

Đáp án : C

Giải thích :

Trục Oy có vecto chỉ phương là u=(0;1;0)

Mặt phẳng (Q) có vecto pháp tuyến nQ=(2;-1;3)

Do mặt phẳng (P) chứa trục Ox và vuông góc với mặt phẳng (Q) nên mặt phẳng (P) có vecto pháp tuyến là n=[u ; nQ ]=(3;0; -2)

Phương trình mặt phẳng (P) có vecto pháp tuyến n và đi qua điểm A(2; -1; 2) là:

3(x -2) -2(z -2) =0

⇔ 3x -2z -2 =0

Bài 4: Phương trình mặt phẳng (α) đi qua M(1; -2; 3) và song song với mặt phẳng (β): 2x – 3y + z + 5 = 0 là :

   A. 2x – 3y +z -11 = 0

   B. –x – 2y +3z -11 = 0

   C. 2x – 3y +2z +11 = 0

   D. 2x – 3y +z +11 = 0

Đáp án : A

Giải thích :

Mặt phẳng (α) song song với mặt phẳng (β): 2x – 3y + z + 5 = 0 nên phương trình mặt phẳng (α) có dạng: 2x -3y +z +D =0 (D≠5)

Mặt phẳng (α) đi qua M(1; -2; 3) nên:

2 .1 -3 .(-2) +3 +D =0 ⇒ D= -11

Vậy phương trình mặt phẳng cần tìm là 2x -3y +z -11 =0

Bài 5: Phương trình mặt phẳng (α) đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng có phương trình (β): 2x - y + 3z = 0 là :

   A. 2x - y+3z -2 = 0

   B. x -13y - 5z + 5 = 0

   C. - x +13y + 5z = 0

   D. x -13y - 5z +6 = 0

Đáp án : B

Giải thích :

AB =(-1; -2;5)

Mặt phẳng (β) có vecto pháp tuyến n1=(2 ; -1 ;3)

Do mặt phẳng (α) đi qua hai điểm A, B và vuông góc với mặt phẳng (β) nên có vecto pháp tuyến là n=[AB ; n1 ]=(-1;13;5)

Phương trình mặt phẳng (α) có vecto pháp tuyến n và đi qua điểm A(3 ; 1 ; -1) là :

-(x -3) +13(y -1) +5(z +1) =0

⇔ x -13y -5z +5 =0

Bài 6: Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A(2; -1; 5) và vuông góc với hai mặt phẳng (P): 3x - 2y + z + 7 = 0 và (Q): 5x - 4y + 3z + 1 = 0. Phương trình mặt phẳng (α) là:

   A. x + 2y + z - 5 = 0

   B. 2x - 4y - 2z - 10 = 0

   C. 2x + 4y + 2z + 10 = 0

   D. x + 2y - z + 5 = 0

Đáp án : A

Giải thích :

Mặt phẳng (P) có vecto pháp tuyến n1=(3; -2;1)

Mặt phẳng (Q) có vecto pháp tuyến n2=(5; -4;3)

Do mặt phẳng (α) vuông góc với 2 mặt phẳng (P) và (Q) nên vecto pháp tuyến của mặt phẳng (α) là n=[n1 , n2 ]=(-2; -4; -2)= -2(1;2;1)

Phương trình mặt phẳng (α) đi qua A (2; -1; 5) và có vecto pháp tuyến n=(1;2;1) là: x -2 +2(y +1) +z -5 =0

⇔ x +2y +z -5 =0

Bài 7: Trong không gian với hệ toạ độ Oxyz, gọi (α) là mặt phẳng qua G(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác gốc O) sao cho G là trọng tâm của tam giác ABC. Khi đó mặt phẳng (α) có phương trình:

   A. 6x + 3y + 2z - 18 = 0

   B. 3x + 6y + 2z + 18 = 0

   C. 2x + y + 3z - 9 = 0

   D. 6x + 3y + 2z + 9 = 0

Đáp án : A

Giải thích :

Giả sử tọa độ của các điểm là A (a; 0; 0), B (0; b; 0), C (0; 0; c)

Do G(1; 2; 3) là trọng tâm tam giác ABC nên ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Mặt phẳng (α) đi qua A (3; 0; 0), B (0; 6; 0), C (0; 0; 9) có phương trình là:

x/3 +y/6 +z/9 =1

⇔ 6x +3y +2z -18 =0

Bài 8: Trong không gian với hệ toạ độ Oxyz, gọi (α) là mặt phẳng song song với mặt phẳng (β): 2x - 4y + 4z + 3 = 0 và cách điểm A(2; -3; 4) một khoảng k=3. Phương trình của mặt phẳng (α) là:

   A. x - 2y + 2z - 25 = 0 hoặc x - 2y + 2z - 7 = 0

   B. x - 2y + 2z - 25 = 0

   C. x - 2y + 2z - 7 = 0

   D. 2x - 4y + 4z - 5 = 0 hoặc 2x - 4y + 4z - 13 = 0

Đáp án : A

Giải thích :

Phương trình mặt phẳng song song với mặt phẳng là:

2x -4y +4z +D =0 (D≠ 3)

Do cách điểm A( 2; -3; 4) một khoảng k = 3 nên ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=3

⇔ |32 +D| =18 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy phương trình mặt phẳng là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 9: Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0; b; 0), C(0; 0; c) (b > 0, c > 0) và mặt phẳng (P): y - z + 1 = 0. Viết phương trình mặt phẳng (ABC) biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ O đến (ABC) bằng 1/3 .

   A. x + 2y + z - 12 = 0

   B. x + 2y + 2z - 1 = 0

   C. 5x + 4y + 3z - 50 = 0

   D. x - y + z = 0

Đáp án : B

Giải thích :

Phương trình mặt phẳng (ABC) đi qua A(1;0;0), B(0; b; 0), C(0; 0; c) (b > 0, c > 0) là:

x/1 +y/b +z/c =1 ⇔ bcx +cy +bz -bc =0

Mặt phẳng (ABC) có vecto pháp tuyến n=(bc; c; b)

Mặt phẳng (P) có vecto pháp tuyến n1=(0;1; -1)

Do mặt phẳng (ABC) vuông góc với mặt phẳng (P) nên n .n1=0

⇔ c -b =0 ⇔ b =c

Khi đó phương trình mặt phẳng (ABC) là: b2 x +by +bz -b2 =0

⇔ bx +y +z -b =0

Khoảng cách từ O đến (ABC) bằng nên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=1/3 ⇔ 9b2 =b2 +2 ⇔ b = 1/2 (do b > 0)

Vậy phương trình mặt phẳng (ABC) là

1/2 x +y +z -1/2 =0 ⇔ x +2y +2z -1 =0

Bài 10: Trong không gian với hệ toạ độ Oxyz, mặt phẳng (α) đi qua điểm M(5;4;3) và cắt các tia Ox, Oy, Oz các đoạn bằng nhau có phương trình là:

   A. x + y + z - 12 = 0

   B. x + y + z = 0

   C. 5x + 4y + 3z - 50 = 0

   D. x - y + z = 0

Đáp án : A

Giải thích :

Do mặt phẳng (α) cắt các tia Ox, Oy, Oz các đoạn bằng nhau nên mặt phẳng (α) có phương trình:

x/a +y/a +z/a =1

Mặt khác, mặt phẳng (α) đi qua M (5; 4; 3) nên ta có:

5/a +4/a +3/a =1 ⇔ a=12

Vậy phương trình mặt phẳng (α) là:

x/12 +y/12 +z/12 =1 ⇔ x +y +z -12 =0

Bài 11: Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng chứa trục Oy và tạo với mặt phẳng (Q): y + z + 1 = 0 góc 600. Phương trình mặt phẳng (P) là:

   A. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   B. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   C. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   D. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : C

Giải thích :

Gọi n (a;b;c) là vecto pháp tuyến của mặt phẳng (P)

Mặt phẳng (Q) có vecto pháp tuyến n1 =(0;1;1), trục Oy có vecto chỉ phương

u=(0;1;0)

Do mặt phẳng (P) chứa trục Oy nên n. u=0 ⇔ b=0

Mặt phẳng (P) tạo với mặt phẳng (Q) góc 600

⇒ cos ⁡ 600=Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án =Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

⇔ 1/2=Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ⇔ a=±c

Chọn a = 1 ⇒ c=±1. Khi đó, phương trình mặt phẳng (P) đi qua điểm O(0; 0; 0) và có vecto pháp tuyến n là: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 12: Trong không gian với hệ toạ độ Oxyz, cho hình cầu (S): (x - 1)2 +(y - 2)2 +(z - 3)2 = 1. Phương trình mặt phẳng (α) chứa trục Oz và tiếp xúc với (S)

   A. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   B. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   C. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   D. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : D

Giải thích :

Gọi n (a;b;c) là vecto pháp tuyến của mặt phẳng (P)

Trục Oz có vecto chỉ phương u=(0;0;1) và đi qua điểm O(0; 0; 0)

Do mặt phẳng (P) chứa trục Oz nên n. u=0 ⇔ c=0

Phương trình mặt phẳng (P) có vecto pháp tuyến n (a;b;0) và đi qua O là:

ax +by=0

Mặt cầu (S) có tâm I (1; 2; 3) và bán kính R = 1.

Do mặt phẳng (P) tiếp xúc với mặt cầu S nên d(I;(P))=R

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án =1 ⇔ a2 +4ab +4b2 =a2 +b2

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Với b = 0, chọn a= 1 ⇒ phương trình mặt phẳng (P) là x = 0

Với a=(-3/4)b, chọn b= -4 ⇒ a=3,

Phương trình mặt phẳng (P) là: 3x -4y =0

Bài 13: Trong không gian với hệ toạ độ Oxyz, cho hình cầu (S): (x - 1)2 + (y - 2)2 + (z - 3)2 = 16. Phương trình mặt phẳng (α) chứa Oy cắt hình cầu (S) theo thiết diện là đường tròn có chu vi bằng 8π

   A. (α): 3x + z =0

   B. (α): 3x - z =0

   C. (α): 3x + z +2 =0

   D. (α): x - 3z =0

Đáp án : B

Giải thích :

Gọi n (a;b;c) là vecto pháp tuyến của mặt phẳng (P)

Trục Oy có vecto chỉ phương u=(0;1;0) và đi qua điểm O(0; 0; 0)

Do mặt phẳng (P) chứa trục Oz nên n. u=0 ⇔ b=0

Phương trình mặt phẳng (P) có vecto pháp tuyến n(a;0;c) và đi qua O là:

ax +cz =0

Mặt cầu (S) có tâm I (1; 2; 3) và bán kính R = 4.

Mặt phẳng cắt mặt cầu theo thiết diện là đường tròn chu vi bằng

⇒ Bán kính của thiết diện là 4

⇒ Mặt phẳng (P) đi qua tâm I của mặt cầu (S)

Khi đó, ta có: a +3c=0 ⇔ a= -3c

Chọn c= -1 ⇒ a=3

Vậy phương trình mặt phẳng (P) là: 3x -z=0

Bài 14: Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng song song với mặt phẳng Oxz và cắt mặt cầu (x - 1)2 + (y + 2)2 + z2 = 12 theo đường tròn có chu vi lớn nhất. Phương trình của (P) là:

   A. y +2 =0

   B. y -2 =0

   C. y +1 =0

   D. x -2y +1 =0

Đáp án : A

Giải thích :

Mặt phẳng (P) song song với mặt phẳng Oxz nên mặt phẳng (P) có dạng:

y +D =0 (D≠0)

Mặt cầu có tâm I (1; -2; 0) và bán kính R=2√3

Mặt phẳng cắt mặt cầu theo đường tròn có chu vi lớn nhất ⇔ Mặt phẳng (P) đi qua tâm I

⇒ -2 +D =0 ⇔ D=2

Vậy phương trình mặt phẳng (P) là y +2 =0

Bài 15: Trong không gian Oxyz. Phương trình mặt phẳng (α) đi qua A(-1 ;2 ;4) và song song với mặt phẳng (P): 2x - 4y + 5z - 15 = 0

   A. (α): 2x - 4y + 5z + 10 = 0

   B. (α): 2x - 4y + 5z - 5 = 0

   C. (α): 2x - 4y + 5z - 10 = 0

   D. (α): 2x - 4y + 5z + 5 = 0

Đáp án : C

Giải thích :

Phương trình mặt phẳng (α) song song với mặt phẳng (P) : 2x – 4y + 5z – 15 =0 có dạng :

⇒ 2x -4y +5z +D =0 (D≠ -15)

Do mặt phẳng (α) đi qua điểm A (-1 ; 2 ; 4) nên ta có :

2 .(-1) -4 .2 +5 .4 +D =0 ⇒ D= -10

Vậy phương trình mặt phẳng cần tìm là : 2x -4y +5z -10 =0

Bài 16: Trong không gian Oxyz cho ba điểm A(3;0;0), B(-1;1;1), C(-3;1;2). Phương trình của mặt phẳng (ABC) là :

   A. 2x + y + 2z - 2 = 0

   B. x + 2y + 2z - 3 = 0

   C. x + 2y + z - 3 = 0

   D. x - 2y + 2z - 3 = 0

Đáp án : B

Giải thích :

AB=(-4;1;1); AC=(-6;1;2)

⇒ [AB , AC ]=(1;2;2)

Phương trình mặt phẳng (ABC) nhận n=[AB , AC ]=(1;2;2) làm vecto pháp tuyến và đi qua A (3; 0; 0) là:

x +2y +2z -3 =0

Bài 17: Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(5;1;3), B(1;2;6), C(5;0;4). Viết phương trình mặt phẳng chứa AB và song song với CD.

   A. x + y + z - 9 = 0

   B. 2x - y + 3z + 6 = 0

   C. 2x - y + z + 4 = 0

   D. 2x + 5y + z - 18 = 0

Đáp án : D

Giải thích :

AB =(-4;1;3); CD=(-1;0;2)

⇒ [AB , CD ]=(2;5;1)

Phương trình mặt phẳng (P) chứa AB và song song với CD nhận n=[AB , CD ]=(2;5;1) làm vecto pháp tuyến và đi qua A (5;1;3) là:

2(x -5) +5(y -1) +z -3 =0

⇔ 2x +5y +z -18 =0

Bài 18: Trong không gian Oxyz cho 2 điểm A(4;-1;3), B(-2;3;1). Phương trình mặt phẳng trung trực của đoạn thẳng AB là

   A. 3x - 2y + z + 3 = 0

   B. - 6x + 4y - 2z - 6 = 0

   C. 3x - 2y + z - 3 = 0

   D. 3x - 2y - z + 1 = 0

Đáp án : C

Giải thích :

Mặt phẳng (P) đi qua trung điểm I (1; 1; 2) của AB và vuông góc với AB nên nhận

AB=(-6;4; -2) làm vecto pháp tuyến.

Phương trình mặt phẳng (P) là: -6(x -1) +4(y -1) -2(z -2) =0

⇔ 3x -2y +z -3 =0

Bài 19: Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q): x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

   A. y - z = 0

   B. y + z = 0

   C. y - z - 1 = 0

   D. y - 2z = 0

Đáp án : A

Giải thích :

Trục Ox có vecto chỉ phương u=(1;0;0) và đi qua điểm O (0; 0; 0)

Mặt phẳng (Q) có vecto pháp tuyến nQ=(1;1;1)

[u , nQ ]=(0;-1;1)

Mặt phẳng (P) chứa trục Ox và vuông góc với mặt phẳng (Q) nên nhận vecto

n= -[u , nQ ]=(0;1; -1) làm vecto pháp tuyến

Phương trình mặt phẳng (P) nhận n làm vecto pháp tuyến và đi qua O(0; 0; 0) là:

y -z =0

Bài 20: Trong không gian với hệ trục tọa độ Oxyz. Phương trình của mặt phẳng chứa trục Ox và qua điểm I(2;-3;1) là:

   A. y + 3z = 0

   B. 3x + y = 0

   C. y - 3z = 0

   D. 3y + z = 0

Đáp án : A

Giải thích :

Trục Ox có vecto chỉ phương u=(1;0;0) và đi qua điểm O (0; 0; 0)

OI=(2; -3;1)

⇒ [OI , u]=(0;1;3)

Do mặt phẳng (P) chứa trục Ox và đi qua I(2; -3; 1) nên mặt phẳng (P) nhận

n=[OI , u]=(0;1;3) làm vecto pháp tuyến.

Phương trình mặt phẳng (P) là: y +3z =0

Bài 21: Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(-2;1;3), C(2;-1;3) và D(0;3;1). Phương trình mặt phẳng (α) đi qua A, B đồng thời cách đều C, D

   A. (P1): 3x + 5y + 7z - 20 = 0; (P2): x + + 3y + 3z - 10 = 0

   B. (P1): 6x - 4y + 7z - 5 = 0; (P2): 3x + y + 5z + 10 = 0

   C. (P1): 6x - 4y + 7z - 5 = 0; (P2): 2x + 3z - 5 = 0

   D. (P1): 4x + 2y + 7z - 15 = 0; (P2): x - 5y - z + 10 = 0

Đáp án : A

Giải thích :

AB=(-3; -1;2); CD=(-2;4; -2)

Gọi n là vecto pháp tuyến của mặt phẳng (α)

Do mặt phẳng (α) cách đều C, D nên xảy ra 2 trường hợp

TH1: CD song song với mặt phẳng (α)

Khi đó: n=[AB , CD ]=(-6; -10; -14)= -2(3;5;7)

Phương trình mặt phẳng (α) là:

3(x -1)+5(y -2) +7(z -1) =0

⇔ 3x +5y +7z -20 =0

TH2: Mặt phẳng (α) cắt CD tại trung điểm I của CD

I(1;1;2) ⇒ AI=(0; -1;1)

Do I thuộc (α) nên n=[AB ; AI]=(1;3;3)

Phương trình mặt phẳng (α) là:

x -1+3(y -2)+3(z -1) =0

⇔ x +3y +3z -10 =0

Bài 22: Trong không gian Oxyz cho điểm A(1;0;0) và hai đường thẳngToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án; Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Phương trình mặt phẳng qua A và song song với d1 và d2

   A. x + y + z - 1 = 0

   B. 2x + y + 2z - 1 = 0

   C. x + y + 2z - 1 = 0

   D. 3x + 2y + z - 3 = 0

Đáp án : C

Giải thích :

Đường thẳng d1 có vecto chỉ phương u1=(1 ;1 ; -1)

Đường thẳng d2 có vecto chỉ phương u2=(2 ;0 ; -1)

Mặt phẳng (P) song song với d1 và d2 nên mặt phẳng (P) có vecto pháp tuyến

n=[u1 ; u2 ]=(-1;-1; -2)= -(1;1;2)

Phương trình mặt phẳng (P) có vecto pháp tuyến n=(1;1;2) và đi qua A (1 ; 0 ; 0) là:

x +y +2z -1 =0.

Bài 23: Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;4;3). Viết phương trình mặt phẳng cắt các trục Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm tứ diện OABC ?

   A. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   B. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   C. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   D. Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : D

Giải thích :

Goi A(a; 0; 0); B(0; b; 0); C(0; 0; c)

G(1; 4; 3) là trọng tâm của tứ diện OABC.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Phương trình mặt phẳng (ABC) là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 24: Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng có phương trình (P): x + 2y + 2z - 1 = 0, (Q): x + 2y - z - 3 = 0 và mặt cầu (S): (x - 1)2 +(y + 2)2 +z2 = 5 .Mặt phẳng (α) vuông với mặt phẳng (P), (Q) đồng thời tiếp xúc với mặt cầu (S).

   A. 2x - y + 1 = 0 Λ 2x - y - 9 = 0

   B. 2x - y - 1 = 0 Λ 2x - y + 9 = 0

   C. x - 2y + 1 = 0 Λ x - 2y - 9 = 0

   D. 2x + y - 1 = 0 Λ 2x + y + 9 = 0

Đáp án : A

Giải thích :

Mặt phẳng (P) có vecto pháp tuyến n1=(1;2;2)

Mặt phẳng (Q) có vecto pháp tuyến n2=(1;2;-1)

Mặt cầu (S) có tâm I (1; -2; 0), bán kính R=√5.

Gọi n là vecto pháp tuyến của mặt phẳng (α).Do mặt phẳng (α) vuông góc với mặt phẳng (P), (Q) nên n=[n1 ; n2 ]=(-6;3;0)= -3(2; -1;0)

Phương trình mặt phẳng (α) có dạng: 2x -y + D =0

Do mặt phẳng (α) tiếp xúc với mặt cầu (S) nên d(I;(α))=R

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án=√5

⇒ |4+D|=5 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy phương trình mặt phẳng (α) là

2x -y +1=0

2x -y -9 =0

Bài 25: Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x + 2y - 2z + 1 = 0, 2 điểm A(1;0;0), B(-1;2;0), (S): (x - 1)2 + (y - 2)2 +z2 = 25. Viết phương trình mặt phẳng (α) vuông với mặt phẳng (P), song song với đường thẳng AB, đồng thời cắt mặt cầu (S) theo đường tròn có bán kính bằng r=2√2

   A. 2x - 2y + 3z + 11 = 0 Λ 2x - 2y + 3z - 23 = 0

   B. 2x + 2y + 3z + 11 = 0 Λ 2x + 2y + 3z - 23 = 0

   C. 2x - 2y + 3z - 11 = 0 Λ 2x - 2y + 3z + 23 = 0

   D. 2x + 2y + 3z - 11 = 0 Λ 2x + 2y + 3z + 23 = 0

Đáp án : B

Giải thích :

Mặt phẳng (P) có vecto pháp tuyến n1=(1;2; -2)

AB=(-2;2;0)

Gọi n là vecto pháp tuyến của mặt phẳng (α)

Do mặt phẳng (α) vuông với mặt phẳng (P), song song với đường thẳng AB nên

n=[n1 ; AB ]=(4;4;6)= 2(2; 2; 3)

Phương trình mặt phẳng (α) có dạng:

2x +2y +3z +D =0

Mặt cầu (S) có tâm I (1; 2; 0) bán kính R=5

Gọi khoảng cách từ tâm I đến mặt phẳng (P) là d

⇒ d=Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Mặt phẳng (α) cắt mặt cầu (S) theo đường tròn có bán kính bằng r= 2√2 nên ta có:

d2 +r2 =R2 ⇒ d=√(52 -(2√2)2 )=√17

⇒ |D+6|/√17=√17 ⇔ |D+6|=17 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy phương trình mặt phẳng (α) là:

2x +2y +3z +23 =0

2x +2y +3z -11 =0

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác