Cách sử dụng kí hiệu ∈, ∉, ⊂, ℕ, ℤ, ℚ (cách giải + bài tập)

Chuyên đề phương pháp giải bài tập Cách sử dụng kí hiệu ∈, ∉, ⊂, ℕ, ℤ, ℚ lớp 7 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Cách sử dụng kí hiệu ∈, ∉, ⊂, ℕ, ℤ, ℚ.

Cách sử dụng kí hiệu ∈, ∉, ⊂, ℕ, ℤ, ℚ (cách giải + bài tập)

Quảng cáo

1. Phương pháp giải

‒ Để sử dụng được các kí hiệu ∈, ∉, ⊂, ℕ, ℤ, ℚ thì ta cần nắm vững ý nghĩa và kí hiệu của từng kí hiệu:

+ Kí hiệu : Tập hợp các số tự nhiên.

+ Kí hiệu : Tập hợp các số nguyên.

+ Kí hiệu : Tập hợp các số hữu tỉ.

+ Kí hiệu ∈: “phần tử của” hoặc “thuộc”

+ Kí hiệu ∉: “không phải là phần tử của” hoặc “không thuộc”.

+ Kí hiệu ⊂: “tập hợp con của”.

‒ Các kí hiệu ∈ ; ∉ dùng để so sánh giữa phần tử với tập hợp.

‒ Kí hiệu ⊂ dùng để so sánh giữa các tập hợp với nhau.

‒ Để biết được một số thuộc tập hợp số hữu tỉ ℚ hay không ta cần nắm được định nghĩa số hữu tỉ: Số hữu tỉ là số được viết dưới dạng phân số ab với a, b ∈ , b ≠ 0.

Chú ý: Số thập phân, số nguyên, hỗn số đều là số hữu tỉ.

2. Ví dụ minh hoạ

Ví dụ 1. Giải thích vì sao các số ‒5; 0; ‒0,41; 259 là các số hữu tỉ. Viết kí hiệu các số này trong tập số hữu tỉ.

Hướng dẫn giải:

Quảng cáo

Các số đã cho là số hữu tỉ vì mỗi số đó đều viết được dưới dạng phân số.

Cụ thể là:

5=51;0=01;0,41=41100;259=239.

Do các số trên là số hữu tỉ nên ta kí hiệu được:

‒5 ∈ ; 0 ∈ ; ‒0,41 ∈ ; 259.

Ví dụ 2. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) ℕ ⊂ ℤ ⊂ ℚ;

b) Nếu a ∈ℕ thì a ∈ℤ;

c) Nếu a ∈ ℕ thì a ∈ ;

d) ℕ ∈ ℤ ∈ ℚ;

e) Nếu a ∈ℤ thì a ∉;

f) Nếu a ∈ thì a ∈ℕ.

Quảng cáo

Hướng dẫn giải:

+ Ta có:

Tập số tự nhiên ℕ = {0; 1; 2; 3; …}.

Tập số nguyên ℤ = {…; ‒2; ‒1; 0; 1; 2; …}.

Tập số hữu tỉ ℚ = {…; ‒2; ‒1,5; ‒1; 0; 1; 1,5; …}

Ta sử dụng kí hiệu ⊂ để so sánh giữa các tập hợp với nhau. Do đó ℕ ⊂ℤ ⊂ ℚ.

Vậy a) đúng và d) sai.

+ Vì ℕ ⊂ ℤ ⊂ ℚ nên nếu a ∈ℕ thì a ∈ℤ và a ∈ .

Suy ra b), c) đúng.

+ Vì ℤ ⊂ ℚ nên nếu a ∈ℤ thì a ∈.

Suy ra e) sai.

+ Ta lấy ví dụ a = 1,5 ∈ nhưng 1,5 không phải số tự nhiên nên 1,5 ∉ℕ.

Do đó f) sai.

3. Bài tập tự luyện

Bài 1. Điền kí hiệu thích hợp vào chỗ trống: 2022 … :

A. ⊂;

B. ∉;

C. ∈;

D. Một kí hiệu khác.

Quảng cáo

Bài 2. Điền kí hiệu thích hợp vào chỗ trống: 40442 ∉ ...

A. ℕ;

B. ℤ;

C. ℚ;

D. Một kết quả khác.

Bài 3. Chọn đáp án đúng

A. ℚ ⊂ ℕ;

B. ℤ ⊂ ℕ;

C. ℚ ⊂ ℤ;

D. ℤ ⊂ ℚ.

Bài 4. Khẳng định nào sau đây đúng: Nếu a ∈ℤ thì

A. a ⊂ℕ;

B. a ⊂ ℚ;

C. a ∈ℚ;

D. a ∈ℕ.

Bài 5. Khẳng định nào sau đây đúng:

A. Các phần tử của tập hợp 0;12;1 đều thuộc tập hợp ℤ;

B. Các phần tử của tập hợp 0;12;1 đều thuộc tập hợp ℚ;

C. Các phần tử của tập hợp 0;12;1 đều thuộc tập hợp ℕ;

D. Các phần tử của tập hợp 0;12;1 đều không thuộc tập hợp ℕ.

Bài 6. Cho các khẳng định sau:

(1) 9,5 ∉ℕ;

(2) Tập số hữu tỉ được kí hiệu là ℤ;

(3) ℤ ⊂ ℚ;

(4) 84 ∈ ℤ;

(5) ‒1,2345 ∉ ℚ;

Các khẳng định đúng là:

A. (1), (2), (3);

B. (1), (2), (3), (4);

C. (1), (5);

D. (1), (3), (4).

Bài 7. Cho các khẳng định sau:

(1) Số hữu tỉ là số được viết dưới dạng phân số ab với a, b ∈ ℤ, b ≠ 0.

(2) Số hữu tỉ là số nguyên.

(3) ℕ ∈ℤ

(4) ℕ ⊂ ℚ.

Các khẳng định sai là:

A. (1), (2);

B. (2), (3);

C. (1), (4);

D. (1), (2), (3), (4).

Bài 8. Cho các khẳng định sau:

(1) 0,3 ∉ℕ;

(2) ‒2 ∈ ℕ;

(3) 0b ∈ℚ, b ∈ℤ, b ≠ 0;

(4) 1 ⊂ ℚ;

(5) 114 ∈ℤ;

(6) 12-3 ∈ℤ.

Số khẳng định đúng trong các khẳng định trên là:

A. 6;

B. 4;

C. 5;

D. 3.

Bài 9. Một căn phòng dạng hình hộp chữ nhật có kích thước lần lượt là 7,5 m; 6 m; 5,5 m. Biểu diễn các kích thước trên tập hợp số:

A. ℤ;

B. ℕ;

C. ℚ;

D. Một đáp án khác.

Bài 10. Điền kí hiệu ℕ; ℤ; ℚ thích hợp vào chỗ chấm (điền tất cả các khả năng có thể): 2022 ∈ …

A. 2022 ∈ ℕ;

B. 2022 ∈ ℕ; 2022 ∈ ℤ;

C. 2022 ∈ ℚ;

D. 2022 ∈ ℕ; 2022 ∈ ℤ; 2022 ∈ ℚ.

Xem thêm các dạng bài tập Toán 7 hay, chi tiết khác:

Lời giải bài tập lớp 7 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 sách mới các môn học
Tài liệu giáo viên