Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Bài viết Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối lớp 7 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối.

Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

A. Phương pháp giải

Dạng 1: Dựa vào tính chất |x| ≥ 0. Ta biến đổi biểu thức A đã cho về dạng A ≥ a (với a là số đã biết) để suy ra giá trị nhỏ nhất của A là a hoặc biến đổi về dạng A ≤ b (với b là số đã biết) từ đó suy ra giá trị lớn nhất của A là b.

Dạng 2: Các biểu thức chứa hai hạng tử là hai biểu thức trong dấu giá trị tuyệt đối.

Phương pháp: Sử dụng tính chất

Với mọi x, y ∈ Q, ta có

  |x + y| ≤ |x| + |y|

  |x – y| ≥ |x| - |y|

B. Ví dụ minh họa

Ví dụ 1: Tìm giá trị nhỏ nhất của biểu thức A = |x + 1001| + 1

Lời giải:

A = |x + 1001| + 1

Vì |x + 1001| ≥ 0 ∀ x

Suy ra |x + 1001| + 1 ≥ 0 + 1 ∀ x

Do đó A ≥ 1 ∀ x

Vậy GTNN của A là , khi |x + 1001| = 0, nghĩa là x = -1001.

Ví dụ 2: Tìm giá trị lớn nhất B = 5 - |5x + 3|

Lời giải:

B = 5 - |5x + 3|

Vì |5x + 3| ≥ 0 ∀ x

⇒ -|5x + 3| ≤ 0 ∀ x

⇒ -|5x + 3| + 5 ≤ 5 ∀ x

⇒ 5 - |5x + 3| ≤ 5 ∀ x

Suy ra B ≤ 5 ∀ x

Vậy GTLN của B là 5, khi |5x + 3| = 0, nghĩa là 5x + 3 = 0 ⇒ x = Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Ví dụ 3: Tìm GTNN của biểu thức C = |x – 1| + |x – 2019|

Lời giải:

C = |x – 1| + |x – 2019|

 = |x – 1| + |-(x – 2019)| (vì |a| = |-a|)

 = |x – 1| + |2019 – x|

Vì |x – 1| + |2019 – x| ≥ |x – 1 + 2019 – x| (theo tính chất ở phần lý thuyết)

Mà |x – 1 + 2019 – x| = |2019 – 1| = |2018| = 2018

Suy ra C ≥ 2018

Vậy GTNN của C là 2018

Ví dụ 4: Tìm GTLN của biểu thức D = |x + 5000| - |x – 3000|

Lời giải:

D = |x + 5000| - |x – 3000| ≤ |x + 5000 – (x – 3000)| (áp dụng tính chất ở phần lý thuyết)

Vì | x + 5000 – (x – 3000)| = | x + 5000 – x + 3000| = |8000| = 8000

Suy ra D ≤ 8000

Vậy GTLN của D là 8000.

C. Bài tập vận dụng

Câu 1. Giá trị lớn nhất của biểu thức A = -2 - |1,4 – x|

A. - 2

B. -3,4

C. 2

D. -1

Lời giải:

A = -2 - |1,4 – x|

Vì |1,4 – x| ≥ 0 ∀ x ⇒ -|1,4 – x| ≤ 0 ∀ x

⇒ - 2 -|1,4 – x| ≤ - 2 – 0 = -2 ∀ x

Do đó A ≤ - 2 ∀ x

Dấu “=” xảy ra khi 1,4 – x = 0 ⇒ x = 1,4

Vậy giá trị lớn nhất của A là -2, khi x = 1,4.

Đáp án A

Câu 2. Giá trị nhỏ nhất của biểu thức H = |x – 5| + 10 là

A. 5

B. 0

C. 10

D. 15

Lời giải:

Vì |x – 5| ≥ 0 ∀ x ⇒ |x – 5| + 10 ≥ 0 + 10 = 10 ∀ x

Suy ra H ≥ 10 ∀ x

Dấu “=” xảy ra khi x – 5 = 0 hay x = 5

Vậy giá trị nhỏ nhất của H là 10 khi x = 5.

Đáp án C

Câu 3. Giá trị lớn nhất của biểu thức Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Lời giải:

Vì |x - 2| ≥ 0 ∀ x ⇒ |x – 2| + 3 ≥ 0 + 3 = 3 ∀ x

Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay (lấy 1 chia cả hai vế, bất đẳng thức đổi dấu)

Suy ra Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Dấu “=” xảy ra khi x – 2 = 0, hay x = 2

Vậy giá trị lớn nhất của N là Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay khi x = 2.

Đáp án B

Câu 4. Biểu thức K = 2|3x – 1| - 4 đạt giá trị nhỏ nhất khi

Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Lời giải:

Vì |3x – 1| ≥ 0 ∀ x

⇒ 2|3x – 1| ≥ 2.0 = 0 ∀ x

⇒ 2|3x – 1| - 4 ≥ 0 – 4 = -4 ∀ x

Do đó K ≥ - 4 ∀ x

Dấu “=” xảy ra khi 3x – 1 = 0 ⇒ 3x = 1 ⇒ x = Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay.

Vậy K đạt giá trị nhỏ nhất khi x = Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay.

Đáp án C

Câu 5. Tìm giá trị của x và y để biểu thức Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay có giá trị lớn nhất.

Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Lời giải:

Cách tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối cực hay

Đáp án B

Câu 6. Tìm giá trị nhỏ nhất của biểu thức N = |x + 5| + |x - 1| + 4

A. 0

B. 4

C. 5

D. 10

Lời giải:

Ta có: |x – 1| = |-(x – 1)| = | 1 – x| (vì |a| = |-a|)

Khi đó N = |x + 5| + |1 – x| + 4

Vì |x + 5| + |1 - x| ≥ |x + 5 + 1 - x| = |6| = 6

Do đó N = |x + 5| + |x - 1| + 4 ≥ 6 + 4 = 10

Vậy giá trị nhỏ nhất của N là 10

Đáp án D

Xem thêm các dạng bài tập Toán lớp 7 chọn lọc, có đáp án hay khác:

Lời giải bài tập lớp 7 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 sách mới các môn học
Tài liệu giáo viên