Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm
Với Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm môn Toán lớp 8 phần Hình học sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 1: Tứ giác để đạt điểm cao trong các bài thi môn Toán 8.
Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm
A. Phương pháp giải
Sử dụng định nghĩa, tính chất của phép đối xứng tâm.
1. Định nghĩa
a) Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.
Quy ước : Điểm đối xứng với O qua điểm O chính là điểm O.
b) Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại. Điểm O gọi là tâm đối xứng của hai hình đó.
2. Các tính chất thừa nhận
Tính chất 1: Nếu các điểm A và A’, B và B’, C và C’ đối xứng với nhau qua điểm O trong đó C nằm giữa A và B thì C’ nằm giữa A’ và B’.
Tính chất này cho phép ta vẽ hai hình đối xứng với nhau qua một điểm.
Tính chất 2: Nếu hai đoạn thẳng (góc, tam giác) đối xứng nhau qua một điểm thì chúng bằng nhau.
B. Ví dụ minh họa
Ví dụ 1. Tam giác ABC đối xứng với tam giác A’B’C’ qua O. Biết chu vi của tam giác A’B’C’ là 32 cm. Chu vi của tam giác ABC là
Lời giải
Vì tam giác ABC đối xứng với tam giác A’B’C’ qua O nên
ΔABC= ΔA'B'C' ⇒AB = A’B’; AC = A’C’; BC = B’C’
Nên AB + AC + BC = A’B’ +A’C’ + B’C’ ⇒PABC=PA'B'C' .
Do đó chu vi tam giác ABC là PABC = 32 cm .
Ví dụ 2. Cho tam giác ABC, trong đó AB = 12cm, BC = 15cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh AC. Chu vi của tứ giác tạo thành là
Lời giải
Lấy M là trung điểm AC khi đó A, C đối xứng nhau qua M. Vẽ B’ đối xứng với B qua M.
Khi đó tam giác B’AC đối xứng với tam giác BCA qua M. Tứ giác tạo thành là ABCB’.
Vì tam giác B’AC đối xứng với tam giác BCA qua M nên:
AB’ = BC =15 cm; B’C = AB = 12 cm.
Chu vi tứ giác ABCB’ là AB + BC + CB’ + AB’ = 12 + 15 + 12 + 15 = 54 cm.
Ví dụ 3. Cho tam giác ABC, đường cao AH, trong đó BC = 18 cm, AH = 3cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh BC. Diện tích của tam giác tạo thành là
Lời giải
Gọi tam giác A’CB đối xứng với tam giác ABC qua trung điểm M của cạnh BC. Khi đó ΔABC= ΔA'BC
Nên SABC=SA'BC.
Ta có
C. Bài tập vận dụng
Câu 1. Điền từ thích hợp vào chỗ trống: Hai điểm M, N gọi là đối xứng nhau qua điểm I nếu…
A. I là trung điểm của đoạn MN.
B. I là điểm nằm ngoài đoạn MM.
C. I là điểm cách M một khoảng bằng 1/2 .
D. I là điểm chia đoạn MN thành tỉ số 2:3
Lời giải:
Theo định nghĩa hai điểm đối xứng qua một điểm: Hai điểm M, N gọi là đối xứng với nhau qua điểm I nếu I là trung điểm của đoạn thẳng MN nên A đúng.
Đáp án: A.
Câu 2. Tam giác ABC đối xứng với tam giác A’B’C’ qua O. Biết chu vi của tam giác A’B’C’ là 40 cm. Chu vi của tam giác ABC là:
A. 32 dm.
B. 40 cm.
C. 20 dm.
D. 80 dm.
Lời giải:
Vì tam giác ABC đối xứng với tam giác A’B’C’ qua O nên
ΔABC= ΔA'B'C' ⇒ AB = A’B’; AC = A’C’; BC = B’C’
Nên AB + AC + BC = A’B’ + A’C’ + B’C’ ⇒PABC=PA'B'C'
Do đó chu vi tam giác ABC là PABC = 40 cm .
Đáp án: B.
Câu 3. Cho tam giác ABC, trong đó AB = 8cm, BC = 11cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh AC. Chu vi của tứ giác tạo thành là:
A. 19cm.
B. 38cm.
C. 76cm.
D. 40cm.
Lời giải:
Lấy M là trung điểm AC khi đó A, C đối xứng nhau qua M. Vẽ B’ đối xứng với B qua M. Khi đó tam giác B’AC đối xứng với tam giác BCA qua M. Tứ giác tạo thành là ABCB’. Vì tam giác B’AC đối xứng với tam giác BCA qua M nên
AB’ = BC =11cm; B’C = BA = 8cm
Chu vi tứ giác ABCB’ là AB + BC + CB’ + AB’ = 8 + 11 + 11 + 8 = 38cm
Đáp án: B.
Câu 4. Cho tam giác ABC, đường cao AH, trong đó BC = 30 cm, AH = 18 cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh BC. Diện tích của tam giác tạo thành là:
A. 270 cm2
B. 540 cm2
C. 280 cm2
D. 360 cm2
Lời giải:
Gọi tam giác A’CB đối xứng với tam giác ABC qua trung điểm M của cạnh BC. Khi đó ΔABC= ΔA'BC
Nên SABC=SA'BC.
Ta có
Đáp án: A.
Câu 5. Cho tam giác ABC có D, E lần lượt là trung điểm của các cạnh AB và AC. Gọi O là một điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, vẽ điểm N đối xứng với O qua E. Tứ giác MNCB là hình gì?
A. Hình bình hành
B. Hình thang cân
C. Hình thang vuông
D. Cả A, B, C đều sai
Lời giải:
Từ giả thiết ta có D là trung điểm của AB và MO, E là trung điểm của AC, ON nên DE là đường trung bình của cả hai tam giác ABC và OMN.
Áp dụng định lí đường trung bình vào hai tam giác trên, ta được:
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành.
Đáp án: A
Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:
- Tìm hình có tâm đối xứng – Tìm tâm đối xứng của một hình
- Chứng minh hai điểm đối xứng qua một điểm (hay, chi tiết)
- Cách chứng minh tứ giác là hình chữ nhật (hay, chi tiết)
- Tìm điều kiện của hình A để hình B trở thành hình chữ nhật
- Chứng minh hai đoạn thẳng, hai góc bằng nhau trong hình chữ nhật
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều