15 Bài tập Vị trí tương đối của hai đường tròn lớp 9 (có đáp án)

Với 15 Bài tập Vị trí tương đối của hai đường tròn lớp 9 có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm Bài tập Vị trí tương đối của hai đường tròn.

15 Bài tập Vị trí tương đối của hai đường tròn lớp 9 (có đáp án)

Câu 1: Nếu hai đường tròn tiếp xúc với nhau thì số điểm chung của hai đường tròn là:

Quảng cáo

A. 1

B. 2

C. 3

D. 4

Lời giải:

Hai đường tròn tiếp xúc với nhau thì có một điểm chung duy nhất

Chọn đáp án A

Câu 2: Cho hai đường tròn (O; R) và (O; r) với R > r cắt nhau tại hai điểm phân biệt và OO' = d . Chọn khẳng định đúng?

A. d = R - r

B. d > R + r

C. R - r < d < R + r

D. d < R - r

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Hai đường tròn (O; R) và (O'; r)(R > r) cắt nhau

Khi đó (O) và (O') có hai điểm chung và đường tròn nối tâm là đường trung trực của đoạn AB

Hệ thức liên hệ R - r < OO' < R + r

Chọn đáp án C

Câu 3: Cho hai đường tròn (O; 8cm) và (O; 6cm) cắt nhau tại A, B sao cho OA là tiếp tuyến của (O). Độ dài dây AB là

Quảng cáo

A. AB = 8,6 cm

B. AB = 6,9 cm

C. AB = 4,8 cm

D. AB = 9,6 cm

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì OA là tiếp tuyến của (O') nên tam giác vuông tại A

Vì (O) và (O') cắt nhau tại A, B nên đường tròn nối tâm OO' là trung trực của đoạn AB

Gọi giao điểm của AB và OO' là I thì AB ⊥ OO' tại I là trung điểm của AB

Áp dụng hệ thức lượng trong tam giác vuông OAO' ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án D

Câu 4: Cho đường tròn (O) bán kính OA và đường tròn (O') đường kính OA. Vị trí tương đối của hai đường tròn là:

A. Nằm ngoài nhau

B. Cắt nhau

C. Tiếp xúc ngoài

D. Tiếp xúc trong

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì hai đường tròn có một điểm chung là A và Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án nên hai đường tròn tiếp xúc trong

Chọn đáp án D

Câu 5: Cho đường tròn (O) bán kính OA và đường tròn (O') đường kính OA. Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C. Khi đó

Quảng cáo

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B

Câu 6: Cho hai đường tròn (O1; 4) và (O2; R) tiếp xúc ngoài nhau biết O1O2 = 10cm. Tìm R

A. 4cm

B. 6cm

C. 14cm

D. 10cm

Lời giải:

Để hai đường tròn đã cho tiếp xúc ngoài khi và chỉ khi:

R1 + R2 = O1O2

Hay 4 + R = 10 nên R = 6cm

Chọn đáp án B.

Câu 7: Cho hai đường tròn (O1; 3cm ) và (O2; R) cắt nhau, biết O1O2 = 11 cm và R > 3. Bán kính R có thể bằng bao nhiêu?

Quảng cáo

A. R = 8 cm

B. R = 9cm

C. R = 14cm

D. R = 15cm

Lời giải:

Để hai đường tròn đã cho cắt nhau khi và chỉ khi:

R - 3 < O1O2 < R + 3 hay R - 3 < 11 < R + 3

Suy ra: R < 14 và 8 < R.

Trong các phương án đã cho chỉ có phương án B thỏa mãn

Chọn đáp án B.

Câu 8: Cho hai đường tròn (O; 15cm) và (I; 20cm) cắt nhau tại hai điểm A và B . Biết rằng O và I nằm hai phía đối với đường thẳng AB và AB = 24cm . Tính đoạn nối tâm OI?

A. 20cm

B. 21cm

C. 23cm

D. 25 cm

Lời giải:

Gọi giao điểm của AB và OI là điểm H .

Theo tính chất đường nối tâm ta có H là trung điểm của AB nên HA = HB = 24 : 2 = 12 cm

Áp dụng định lí Pytago vào tam giác vuông OAH ta có:

OH2 = OA2 – AH2 = 152 – 122 = 81 nên OH = 9 cm

Áp dụng đinh lí Pytago vào tam giác vuông AHI ta có:

HI2 = AI2 – AH2 = 202 – 122 = 256 nên HI = 16 cm

Do đó, OI = OH + HI = 9 + 16 = 25 cm

Chọn đáp án D.

Câu 9: Cho hai đường tròn (O; 10 cm ) và (I; 6cm). Xác định vị trí hai đường tròn biết OI = 3 cm?

A. Ở ngoài nhau

B. Đường tròn (O) đựng đường tròn ( I)

C. Cắt nhau

D. Tiếp xúc trong

Lời giải:

Ta có: OI < R – r ( 3 < 10 – 6)

Do đó, đường tròn (O) đựng đường tròn (I) .

Chọn đáp án B.

Câu 10: Cho hai đường tròn (A; 6cm) và (B; 3cm). Tìm điều kiện để hai đường tròn đã cho ở ngoài nhau?

A. AB > 9cm

B. AB < 9cm

C. AB = 3cm

D. AB < 3cm

Lời giải:

Để hai đường tròn đã cho ở ngoài nhau khi và chỉ khi:

AB > R + r hay AB > 6 + 3 = 9cm

Chọn đáp án A.

Câu 11: Cho nửa đường tròn (O), đường kính AB. Vẽ nửa đường tròn tâm O’ đường kính AO (cùng phía với nửa đường tròn (O)). Một cát tuyến bất kì qua A cắt (O’); (O) lần lượt tại C, D. Chọn khẳng định sai:

A. C là trung điểm của AD

B. Các tiếp tuyến tại C và D của các nửa đường tròn song song với nhau

C. O’C // OD

D. Các tiếp tuyến tại C và D của các nửa đường tròn cắt nhau

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Xét nửa đường tròn (O’) có AO là đường kính và C ∈ (O’) nên Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

⇒ AD ⊥ CO

Xét đường tròn (O) có OA = OD  ⇒ ∆OAD cân tại O có OC là đường cao nên OC cũng là đường trung tuyến hay C là trung điểm của AD

Xét tam giác AOD có O’C là đường trung bình nên O’C // OD

Kẻ các tiếp tuyến Cx; Dy với các nửa đường tròn ta có Cx ⊥ O’C; Dy ⊥ OD mà O’C // OD nên Cx //Dy

Do đó phương án A, B, C đúng

Đáp án cần chọn là: D

Vận dụng

Cho nửa đường tròn (O), đường kính AB. Vẽ nửa đường tròn tâm O’ đường kính AO (cùng phía với nửa đường tròn (O)). Một cát tuyến bất kì qua A cắt (O’); (O) lần lượt tại C, D. Nếu BC là tiếp tuyến của nửa đường tròn (O’) thì tính BC theo R (với OA = R)

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Đáp án cần chọn là: B

Câu 12: Cho hai đường tròn (O); (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M ∈ (O); N ∈ (O’). Gọi P là điểm đối xứng với M qua OO’; Q là điểm đối xứng với N qua OO’. Khi đó, tứ giác MNQP là hình gì?

A. Hình thang cân                                       

B. Hình thang      

C. Hình thang vuông                                  

D. Hình bình hành

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Vì P là điểm đối xứng với M qua OO’

Q là điểm đối xứng với N qua OO’ nên MN = PQ

P ∈ (O); Q ∈ (O’) và MP ⊥ OO’; NQ ⊥ OO’ ⇒ MP // NQ mà MN = PQ

nên MNPQ là hình thang cân

Đáp án cần chọn là: A

Vân dụng

Cho hai đường tròn (O); (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M ∈ (O); N ∈ (O’). Gọi P là điểm đối xứng với M qua OO’; Q là điểm đối xứng với N qua OO’. MN + PQ bằng:

A. MP + NQ

B. MQ + NP

C. 2MP      

D. OP + PQ

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Vì P là điểm đối xứng với M qua OO’

Q là điểm đối xứng với N qua OO’ nên MN = PQ

P ∈ (O); Q ∈ (O’) và MP ⊥ OO’; NQ ⊥ OO’ ⇒ MP // NQ mà MN = PQ

nên MNPQ là hình thang cân

Kẻ tiếp tuyến chung tại A của (O); (O’) cắt MN; PQ lần lượt tại B; C

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

⇒ OP ⊥ PQ tại P ∈ (O) nên PQ là tiếp tuyến của (O).

Chứng minh tương tự ta có PQ là tiếp tuyến của (O’)

Theo tính chất hai tiếp tuyến cắt nhau ta có:

BA = BM = BAO NHIÊU; CP = CA = CQ suy ra B; C lần lượt là trung điểm của MN; PQ và MN + PQ = 2MB + 2 PC = 2AB + 2AC = 2BC

Lại có BC là đường trung bình của hình thang MNPQ nên MP + NQ = 2BC

Do đó MN + PQ = MP + NQ

Đáp án cần chọn là: A

Câu 13: Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc ngoài tại A. Vẽ các bán kính OB // O’D với B, D ở cùng phía nửa mặt phẳng bờ OO’. Đường thẳng DB và OO’ cắt nhau tại I. Tiếp tuyến chung ngoài GH của (O) và (O’) với G, H nằm ở nửa mặt phẳng bờ OO’ không chứa B, D. Tính PI theo R và R’

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Đáp án cần chọn là: D

Vận dụng

Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc ngoài tại A. Vẽ các bán kính OB // O’D với B, D ở cùng phía nửa mặt phẳng bờ OO’. Đường thẳng DB và OO’ cắt nhau tại I. Tiếp tuyến chung ngoài GH của (O) và (O’) với G, H nằm ở nửa mặt phẳng bờ OO’ không chứa B, D. Chọn câu đúng:

A. BD, OO’ và GH đồng quy

B. BD, OO’ và GH không đồng quy

C. Không có ba đường nào đồng quy

D. Cả A, B, C đều sai

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Gọi giao điểm của OO’ và GH là I’

Ta có OG // O’H (do cùng vuông góc GH)

Theo định lý Ta-lét trong tam giác OGI’ ta có:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Vậy BD, OO’ và GH đồng quy.

Đáp án cần chọn là: A

Câu 14: Cho hai đường tròn (O; 8cm) và (O’; 6cm) cắt nhau tại A, B sao cho OA là tiếp tuyến của (O’). Độ dài dây AB là:

A. AB = 8,6cm                                 

B. AB = 6,9cm

C. AB = 4,8cm                                 

D. AB = 9,6cm

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Vì OA là tiếp tuyến của (O’) nên ∆OAO’ vuông tại A

Vì (O) và (O’) cắt nhau tại A, B nên đường nối tâm OO’ là trung trực của đoạn AB

Gọi giao điểm của AB và OO’ là I thì AB ⊥ OO’ tại I là trung điểm của AB

Áp dụng hệ thức lượng trong tam giác vuông OAO’ ta có:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Đáp án cần chọn là: D

Câu 15: Cho hai đường tròn (O; 6cm) và (O’; 2cm) cắt nhau tại A, B sao cho OA là tiếp tuyến của (O’). Độ dài dây AB là:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Lời giải:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Vì OA là tiếp tuyến của (O’) nên OAO’ vuông tại A

Vì (O) và (O’) cắt nhau tại A, B nên đường nối tâm OO’ là trung trực của đoạn AB

Gọi giao điểm của AB và OO’ là I thì AB ⊥ OO’ tại I là trung điểm của AB

Áp dụng hệ thức lượng trong tam giác vuông OAO’ ta có:

Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án

Đáp án cần chọn là: B

Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên