Trắc nghiệm Một số hệ thức về cạnh và đường cao trong tam giác vuông có đáp án (phần 2) - Toán lớp 9
Trắc nghiệm Một số hệ thức về cạnh và đường cao trong tam giác vuông có đáp án (phần 2)
Tài liệu bài tập trắc nghiệm Một số hệ thức về cạnh và đường cao trong tam giác vuông có đáp án (phần 2) Toán lớp 9 chọn lọc, có đáp án với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.
Câu 1: Tính x trong hình vẽ sau:
Lời giải:
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
Đáp án cần chọn là: A
Câu 2: Tính x trong hình vẽ sau:
Lời giải:
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
Đáp án cần chọn là: B
Câu 3: Cho ABCD là hình tháng vuông A và D. Đường chéo BD vuông góc với BC. Biết AD = 12cm, DC = 25cm. Tính độ dài BC, biết BC < 20
A. BC = 15cm
B. BC = 16cm
C. BC = 14cm
D. BC = 17cm
Lời giải:
Kẻ BE ⊥ CD tại E
Suy ra tứ giác ABED là hình chữ nhật (vì ) nên BE = AD = 12cm
Đặt EC = x (0 < x < 25) thì DE = 25 – x
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:
Vậy BC = 15cm
Đáp án cần chọn là: A
Câu 4: Cho ABCD là hình thang vuông tại A và D. Đường chép BD vuông góc với BC. Biết AD = 10cm, DC = 20cm. Tính độ dài BC.
Lời giải:
Kẻ BE ⊥ CD tại E
Suy ra tứ giác ABED là hình chữ nhật (vì ) nên BE = AD = 12cm
Đặt EC = x (0 < x < 20) thì DE = 20 – x
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:
Đáp án cần chọn là: B
Câu 5: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 3 : 4 và AB + AC = 21
A. AB = 9; AC = 10; BC = 15
B. AB = 9; AC = 12; BC = 15
C. AB = 8; AC = 10; BC = 15
D. AB = 8; AC = 12; BC = 15
Lời giải:
Theo giả thiết AB : AC = 3 : 4
Suy ra . Do đó AB = 3.3 = 9 (cm); AC = 3.4 = 12 (cm)
Tam giác ABC vuông tại A, theo định lý Pytago ta có:
BC2 = AB2 + AC2 = 92 + 122 = 225, suy ra BC = 15cm
Đáp án cần chọn là: B
Câu 6: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 5 : 12 và AB + AC = 34
A. AB = 5; AC = 12; BC = 13
B. AB = 24; AC = 10; BC = 26
C. AB = 10; AC = 24; BC = 26
D. AB = 26; AC = 12; BC = 24
Lời giải:
Theo giả thiết AB : AC = 5 : 12
Suy ra . Do đó AB = 5.2 = 10 (cm);
AC = 2.12 = 24 (cm)
Tam giác ABC vuông tại A, theo định lý Pytago ta có:
BC2 = AB2 + AC2 = 102 + 242 = 676, suy ra BC = 26cm
Đáp án cần chọn là: C
Câu 8: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH = 4cm, CH = 9cm. Gọi D, E lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AC. Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M, N (hình vẽ).
Tính độ dài đoạn thẳng DE
A. DE = 5cm
B. DE = 8cm
C. DE = 7cm
D. DE = 6cm
Lời giải:
Tứ giác ARHD là hình chữ nhật vì nên DE = AH.
Xét ΔABC vuông tại A có AH2 = HB.HC = 4.9 = 36 ⇒ AH = 6
Nên DE = 6cm
Đáp án cần chọn là: D
Câu 9: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH = 9cm, CH = 16cm. Gọi D, E lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AC. Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M, N (hình vẽ).
Tính độ dài đoạn thẳng DE.
A. DE = 12cm
B. DE = 8cm
C. DE = 15cm
D. DE = 6cm
Lời giải:
Tứ giác AEHD là hình chữ nhật vì nên DE = AH.
Xét ΔABC vuông tại A có AH2 = HB.HC = 9.16 = 144 ⇒ AH = 12
Nên DE = 12cm
Đáp án cần chọn là: A
Câu 11: Tính diện tích hình thang ABCD có đường cao bằng 12cm, hai đường chéo AC và BD vuông góc với nhau, BD = 15cm.
A. 150cm2
B. 300cm2
C. 125cm2
D. 200cm2
Lời giải:
Qua B vẽ đường thẳng song song với AC, cắt DC ở E. Gọi BH là đường cao của hình thang. Ta có BE // AC, AC ⊥ BD nên BE ⊥ BD
Áp dụng định lý Pytago vào tam giác vuông BDH, ta có: BH2 + HD2 = BD2
⇒ 122 + HD2 = 152 ⇒ HD2 = 81 ⇒ HD = 9cm
Xét tam giác BDE vuông tại B:
BD2 = DE.DH ⇒ 152 = DE.9 ⇒ DE = 25cm
Ta có: AB = CE nên AB + CD = CE + CD = DE = 25cm
Do đó SABCD = 25.12 : 2 = 150(cm2)
Đáp án cần chọn là: A
Câu 12: Cho hình thang vuông ABCD (∠A = ∠D = 90°) có hai đường chéo AC và BD vuông góc với nhau tại H. Biết HD = 18cm, HB = 8cm, tính diện tích hình thang ABCD
A. 504cm2
B. 505cm2
C. 506cm2
D. 506cm2
Lời giải:
Xét ADB vuông tại A có: AH là đường cao ứng với cạnh huyền BD
⇒ HA2 = HB. HD = 8.18 ⇒ HA = 12 (cm) (hệ thức lượng trong tam giác vuông)
Xét ADC vuông tại D có: DH là đường cao ứng với cạnh huyền AC
⇒ HD2 = HA. HC ⇒ 182 = 12HC ⇒ HC = 27 (cm) (hệ thức lượng trong tam giác vuông)
Ta có AC = AH + HC = 12 + 27 = 39 cm
BD = BH + HD = 8 + 18 = 26cm
Đáp án cần chọn là: D
Câu 13: Cho ABC cân tại A, kẻ đường cao AH và CK. Biết AH = 7,5cm; CK = 12cm. Tính BC, AB
A. AB = 10,5cm; BC = 18cm
B. AB = 12cm; BC = 22cm
C. AB = 12,5cm; BC = 20cm
D. AB = 15cm; BC = 24cm
Lời giải:
Áp dụng định lý Pitago cho ∆ABH vuông tại H ta có:
Ta có ∆ABC cân tại A ⇒ AH là đường cao đồng thời là đường trung tuyến (định lý)
⇒ H là trung điểm của BC ⇒ BC = 2BH = 20cm
Đáp án cần chọn là: C
Câu 14: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự là trung điểm AB, AC. Biết HM = 15cm, HN = 20cm. Tính HB, HC, AH
A. HB = 12cm; HC = 28cm; AH = 20cm
B. HB = 15cm; HC = 30cm; AH = 20cm
C. HB = 16cm; HC = 30cm; AH = 22cm
D. HB = 18cm; HC = 32cm; AH = 24cm
Lời giải:
Xét ∆ABC vuông tại A có M là trung điểm AB
⇒ HM là đường trung tuyến ứng với cạnh huyền AB
Xét ∆ACH vuông tại H có N là trung điểm AC
⇒ HN là đường trung tuyến ứng với cạnh huyền AC
Áp dụng định lý Pitago cho ∆ABH vuông tại A có: AB2 + AC2 = BC2
⇔ BC2 = 302 + 402 = 2500 ⇒ BC = 50 (cm)
Áp dụng hệ thức lượng trong ∆ABC vuông tại A có đường cao AH ta có:
AB2 = BH.BC ⇔ 302 = 50.BH ⇔ BH = 18 (cm)
Ta có: HC = BC – BH = 50 – 18 = 32 (cm)
Áp dụng hệ thức lượng trong ∆ABC vuông tại A có đường cao AH ta có:
AH.BC = AB.AC ⇔ AH.50 = 30.40 ⇔ AH = 24 (cm)
Đáp án cần chọn là: D
Câu 15: Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính các đoạn thẳng AM và AN
A. AM = 3cm; AN = 9cm
B. AM = 2cm; AN = 18cm
C. AM = 4cm; AN = 9cm
D. AM = 3cm; AN = 12cm
Lời giải:
Áp dụng định lý Pitago cho ∆ABH vuông tại A có: AB2 + AC2 = BC2
⇔ BC2 = 62 + 82 = 100 ⇒ BC = 10 (cm)
Vì BM là tia phân giác trong của góc B (Tính chất đường phân giác)
Vì BM; BN là tia phân giác trong và ngoài của góc B ⇒ ∠NBM = 90o
Áp dụng hệ thức lượng trong ABM vuông tại B có đường cao BA ta có:
⇒ AB2 = AM.AN ⇔ 62 = 3.AN ⇔ AN = 12 (cm)
Đáp án cần chọn là: D
Câu 16: Cho tam giác ABC vuông tại A có cạnh AB = 30cm và AC = 40cm, đường cao AH, trung tuyến AM. Tính BH, HM, MC
A. BH = 18cm; HM = 7cm; MC = 25cm
B. BH = 12cm; HM = 8cm; MC = 20cm
C. BH = 16cm; HM = 8cm; MC = 24cm
D. BH = 16cm; HM = 6cm; MC = 22cm
Lời giải:
Áp dụng định lý Pytago cho ∆ABH vuông tại A có: AB2 + AC2 = BC2
⇔ BC2 = 302 + 402 = 2500 ⇒ BC = 50cm
Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:
AB2 = BH.BC ⇔ 302 = 50.BH ⇔ BH = 18cm
Vì AM là đường trung tuyến ⇒ M là trung điểm BC
Ta có: MH = BM – BH = 25 – 18 = 7 cm
Đáp án cần chọn là: A
Câu 17: Một tam giác vuông có cạnh huyền bằng 5, còn đường cao tương ứng cạnh huyền là 2. Hãy tính cạnh nhỏ nhất của tam giác vuông này.
Lời giải:
Giả sử tam giác đã cho là ΔABC vuông tại A có AB < AC, BC = 5; AH = 2
Đặt BH = x (0 < x < 2,5) ⇒ HC = 5 – x
Áp dụng hệ thức lượng trong ΔABC vuông tại A có đường cao AH ta có:
Vậy cạnh nhỏ nhất của tam giác đã cho có độ dài là √5
Đáp án cần chọn là: A
Câu 18: Cho ΔABC vuông tại A, các cạnh AB, AC tương ứng tỉ lệ với 3 và 4. Biết đường cao AH = 18.
Tính chu vi ΔABC
A. 90cm
B. 91cm
C. 89cm
D. 88cm
Lời giải:
Theo đề bài ta có: các cạnh AB, AC tương ứng tỉ lệ với 3 và 4
Áp dụng hệ thức lượng trong ΔABC vuông tại A có đường cao AH ta có:
Áp dụng định lý Pitago cho ΔABC vuông tại A ta có:
Chu vi ABC: AB + BC + CA = 22,5 + 30 + 37, 5 = 90cm
Đáp án cần chọn là: A
Câu 19: Cho ΔABC vuông tại A có AB = 3cm, AC = 4cm, đường cao AH và đường trung tuyến AM. Độ dài đoạn thẳng HM là:
Lời giải:
Áp dụng định lý Pytago trong tam giác vuông ABC:
Áp dụng hệ thức lượng trong tam giác vuông ABC:
Đáp án cần chọn là: A
Câu 40: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 10cm, AH = 6cm. Tính độ dài các cạnh AC, BC của tam giác ABC.
A. AC = 6,5 (cm); BC = 12 (cm)
B. AC = 7,5 (cm); BC = 12,5 (cm)
C. AC = 8 (cm); BC = 13 (cm)
D. AC = 8,5 (cm); BC = 14,5 (cm)
Lời giải:
Áp dụng định lý Pytago trong tam giác ABH vuông tại H. Ta có:
AH2 + BH2 = AB2
⇒ BH2 = AB2 – AH2 = 102 – 62 = 100 – 36 = 64
⇒ BH2 = 82
⇒ BH = 8 (cm)
Trong tam giác vuông ABC vuông tại A có AH là đường cao
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
AC2 = BC2 – AB2 = 12,52 − 102 = 56,25 ⇒ AC = 7,5 (cm)
Vậy AC = 7,5 (cm); BC = 12,5 (cm)
Đáp án cần chọn là: B
Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:
- Trắc nghiệm Một số hệ thức về cạnh và đường cao trong tam giác vuông có đáp án
- Trắc nghiệm Tỉ số lượng giác của góc nhọn có đáp án
- Trắc nghiệm Tỉ số lượng giác của góc nhọn có đáp án (phần 2)
- Trắc nghiệm Một số hệ thức về cạnh và góc trong tam giác vuông có đáp án
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều